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CHANGE-POINT PROBLEMS IN REGRESSION

Hyune-Ju Kim, Ph.D.
Stanford University, 1988

? This dissertation focuses on the problem of testing for a change in the regression
model when errors are independently, normally distributed with constant, known or un-
known variance. First we consider the regression model in which only the intercept changes
at some unknown point (Model-1). Secondly, the model in which both intercept and slope
change lS considered (Model-2). In all cases, the likelihood ratio statistic (LRS) is of the

form U = max;<icm Ui, where distributions of U;’s vary according to the assumptions.
< Py

"— In both models, w‘ej"considexj’the likelihood ratio test (‘L’IET) as the problem of the
boundary crossing by the discrete stochastic process and study problems such as approx-
imations to significance levels, powers, and confidence regions for a change point. First of
all, vt: proposefa modified LRT and dxscusssa.symptotlc propertles of test statistics in cases
of random and fixed independent variables. In both caserm analytical approxi-

mations to significance levels. When the independent variables are random, the limiting

distribution of the modxﬁed LRS is a function of a Brownian motion and approximations

in Siegmund (1986, Annals of Statlstncs)\are used. For fixed independent variables, the
limiting distribution involves a Gaussian process with nondifferentiable sample paths. In
this case, an approximation is derived assuming the known variance and mild conditions
about the empirical distribution ngjgnt variable, using the argument in Lead-
better, Lindgrgp _j’?ld Bgo:_;en/(iégLChaptenLZL\;i)qgged for discrete time by Hogan and
Siegmund"( 1/986, Advances in Applied Mathematics). In Model-1, we are also concerned

with the power of the LRT and confidence regions for a change point. )

‘N umencal approximations of sxgmﬁcance levels and powers of the LRT and the results
of corresponding Monte Carlo experiments are obtained. We find that the simulations
confirm that the theoretical results perform well and demonstrate that the results also

can be applied to the unknown variance case.
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3
Introduction 3
"
3
<M
1.1. Change-Point Problems "
";"b
In recent years increasing interest has been shown in problems about stability of l.::l.:
models for a sequence of observations. When a series of observations is taken sequentially, :
it can happen that the whole set of observations can be divided into subsets, each of which 8
can be regarded as a random sample from a different distribution. Assuming points at :::
which model changes are unknown, basically two distinct problems arise : detection and :t:
estimation of change points. w
Change-point problems originally arose in quality control to detect changes in the E:
quality of output from a continuous production process. A process in control maintains ._.
an approximately constant quality of output. Suppose that the process jumps out of ~H
control at some unknown point, the quality worsens and the output become unacceptable. n "
In order to take actions when such a deterioration is suspected, it is required to signal any b‘: A
departure of the output from the target value as soon as possible. (:5
One of the simplest examples is the problem of detecting a single change in the mean e ]
of normal random variables having known and fixed variance. Sequential detection of a ‘ ‘t:,
change in the mean of the distribution of observations has been studied by Page (1954), ‘ :
Shiryayev (1963), Lorden (1971), and Pollak (1985). For fixed sample problems involving .
a finite sequence of observations, Siegmund (1986) gave an analytic approximation for E
a significance level of the likelihood ratio test (LRT) and discussed confidence sets for :_:':.
a change point. James, James, and Siegmund (1987) considered the unknown variance -.::
case as well as the known variance case and studied various tests, such as those based on :_,. ]
o
3
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4
e
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Section 1.1: Change-Point Problems 2

the likelihood ratio and recursive residuals. Also power approximations were deveioped

by integrating approximations for conditional boundary crossing probabilities.

Change-point problems arise in various ways and have been considered in regression
models, time-series models, and survival analysis. For a change in a binomial probabil-
ity, Hinkley and Hinkley (1970) used maximum likelihood methods to estimate a change
point for binary random variables and derived exact and asymptotic distributions of the
maximum likelihood estimator of the change point. A cumulative sum test statistic for
this problem was proposed by Pettitt (1980) and a nonparametric cumulative sum statis-
tic was applied to binomial random variables by Pettitt (1979). An example of this type
of a change in epidemiology was described in Worsley (1983), who used the LRT to test
for a change in probability of a sequence of independent binomial random variables. He
also compared powers of the LRT and the cumulative sum test and discussed the rela-
tionship between the cumulative sum test and a two-sample Kolmogorov-Smirnov test.
Worsley (1986) used maximum likelihood methods to test for a change in a sequence
of independent random variables from an exponential family.. He found the exact null
and alternative distributions of the test statistics using an iterative numerical procedure.
Exact and approximate confidence regions for the change point were given, based on a
level a LRT and a modification of the method proposed by Cox and Spijétvoll (1982). He
also discussed an application to the data set on the time intervals between explosions in

British coal mines between 1875 and 1950.

Change-point problems in time-series models have been considered in Picard (1985)
who discussed applications to Canadian lynx data, IBM common stock closing prices,
and German unemployment data. Picard was concerned with detecting two kinds of
changes: first is a change in the spectrum of a time series; secondly she considered a
change in the mean or covariance of an autoregressive process. Matthews, Farewell, and
Pyke (1983) gave an example of change-point problems in survival analysis. They con-
sidered the problem of testing for a constant failure rate against alternatives with failure

rates involving a single change-point. Examples of change-point problems in regression
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Section 1.2: Two-Phase Regression 3

models were discussed in a number of papers. With three econometric examples, Brown,
Durbin, and Evans (1975) discussed two-phase multiple regression problems. In Esterby
and Elshaarawi (1981), a two-phase polynomial regression model has been proposed for
the pollen concentration in lake sediment cores. Also Beals (1972, Chapter 12) shows a
data set to which a multi-phase regression model can be applied. In this dissertation, we
study change-point problems in regression models, especially two-phase linear regression

problems.
1.2. Two-Phase Regression

Regression models which are composed of two different linear phases have many
applications. Asin Brown, Durbin and Evans (1975), it might be suspected that the slope
and the intercept have changed after an unknown point in the sequence of observations.
In some cases, it may be necessary to consider a regression model in which only one of
the parameters changes, while the other remains constant. Maronna and Yohai (1978)
considered a two-phase regression model in which only the intercept term changes and

discussed applications in meteorology.

The two-phase regression model was first studied by Quandt (1958) who proposed
a maximum likelihood method to estimate the parameters in the broken line regression
model. Quandt (1960) also proposed a likelihood ratio test (LRT) to test for a change
in the regression model as opposed to the null hypothesis that the data follow only one
simple linear regression. On the basis of the empirical distribution resulting from some
sampling experiments, he concluded that -2log(likelihood ratio) could not have a chi-square

distribution with the appropriate degrees of freedom under the null hypothesis.

A second approach to the problem of testing for a change in a regression model
is to use recursive residuals introduced by Brown, Durbin, and Evans (1975). Brown.
Durbin, and Evans developed tests based on the cusum and cusum of squares of recursive
residuals, defined to be uncorrelated with zero means and constant variance. They also
considered other techniques based on moving regressions and on the regression models

whose coefficients are polynomial in time. As well, the plotting of Quandt’s log likelihood




LA LT WL WS LW W R RN XN YN A W TR P R AT R T AR IR S S Sa* et Jat a0 Jha=giat e’ g & ot gAR oL ghe - oy R G S " B

Section 1.2: Two-Phase Regression 4

ratio statistic (LRS) was suggested. They discussed applications of these techniques to

o three sets of real data taken from the field of economics.

N Since the 1960’s, there has been considerable attention to the estimation of parame- :

ters as well as the problem of testing for a change in the regression model. Feder (1975)

‘:: showed by example that if the true model contains fewer phases than the assumed model, '
;::' the least squares estimators are not asymptotically normal and the -2log(likelihood ratio)
:;: statistic is not asymptotically chi-square. He also concluded that the asymptotic null dis-
N tribution of the -2log(likelihood ratio) would depend on the configuration of the values of o
:'3' the independent variable. Beckman and Cook (1979) further investigated the dependence
’:' of the test on the values of the independent variable and gave critical values for testing A
A for a change in the regression model by simulation. They used 4-different configurations
of the values of the independent variable, and their results show that this configuration
2’ can have a significant influence on the null distribution of the LRS. They also discussed
. differences between the continuous model in which the composite regression function is
constrained to be continuous at the change point and the discontinuous model in which it :

IS is not. Hawkins (1980) pointed out that the inferential theory of the two-phase regression )
;.. model depends strongly on whether or not continuity at the change-point is assumed.
L Difficulties of this problem are the facts that standard maximum likelihood asymp-
‘el totic theory is not applicable and also the null distribution of the test statistic depends on !
;' the spacings of the values of the independent variable. The sampling distributions of most ;
X of the test statistics described below are quite complicated. Because of this complexity,
S:. most previous work has used numerical or Monte Carlo methods. In 1983, Worsley gave :
::s analytic approximations to an upper bound on the null distribution function of the test h

‘ statistic based on an improved Bonferroni’s inequality. He considered a general multiple
N regression model with a normal random error of constant variance, where there may be a
' change in the coefficient vector at an unknown point in the data. Worsley’s upper bounds

) are much better than Bonferroni's. However it requires considerable numerical work and 3
y sometimes the errors are quite substantial , especially for larzer sample sizes. >
P :
|
I

P I
54,978, 59,7
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Section 1.2: Two-Phase Regression 5 ; é
!
This dissertation focuses on the problem of testing for a change in the regression ’
model when the errors are independently. normally distributed with constant variance. ;
]
In this dissertation, two kinds of models are considered. First is the regression model
in which only the intercept changes at some unknown point (Model-1). Secondly, the ._.:v
model in which both the intercept and the slope change is considered (Model-2). Model-2 G
e,
is considered without continuity constraint. The nature of the null distributions of these ey
cases are as follows : In Model-1, if the variance is known, then the LRS is the maximum Kt
L)
absolute value of correlated standard normal random variables. If the variance is unknown, >
then the LRS is the maximum absolute value of the ratios of correlated standard normal .
~ 1
random variables and the square root of a chi-square random variable. In Model-2, if the '
variances of the error variable is known, then the LRS is the maximum of correlated chi- N
square random variables with 2 degrees of freedom. If the variance is unknown, then the z
>
LRS is the maximum of correlated Beta random variables. In all cases. the LRS is of the N
form ::
b {
U= max U.',
where distributions of U;'s vary according to the assumptions. A point of interest is how E‘.
to deal with the maximization in the LRS. Since it is difficult to get the exact distribution S
. ¥
of U, Beckman and Cook (1979) suggested a simple bound on the distribution function A
b
based on Bonferroni’s inequality : ::"
“
v
Pr(U>u)=Pr( | 4i) < > Pr(A), e
i i l‘"
where A, is the event that {U; > u}. Worsley (1983) improved this upper bound by ;'_ ]
)
Pr(U>w)=Pr(|J 4i) < ) Pr(4) =) Pr(Aif ) 4ina), o
i i i '.' '
In this dissertation, the LRT is considered as the problem of the boundary crossing by N
-«
the discrete stochastic process and an approximation to the null distribution function is E’:
¥y’
derived under mild conditions. ::
»
Chapter 2 deals with the case that only the intercep’ -an change and is organized 2
o
o
l~ \J
1 ]
> g
N
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Section 1.2: Two-Phase Regression 8

as follows. In Section 2.1, the modified LRT (MLRT) to test for a change only in the
intercept term is proposed. Section 2.2 discusses asymptotic properties of test statistics
in the cases of random and fixed independent variables. In both cases, Section 2.3 gives
analytic approximations to significance levels. When the independent variable is random,
the limiting distribution of the modified LRS (MLRS) involves a Brownian motion and
results in Siegmund (1986) are used to approximate significance levels. For fixed values of
the independent variable, an approximation is derived assuming that the variance of the
error variable is known and that the observations of the independent variable satisfy certain
conditions. Since the independent variables are not random in most applications, this case
is the most important and the most difficult one. When the independent variables are
nonrandom, the limiting distribution of the MLRS is not a function of a well-known process
like Brownian motion. However it involves a Gaussian process with nondifferentiable
sample paths. To approximate the boundary crossing probability by a discrete stochastic
process whose limiting process has a non-differentiable sample path, the argument in
Leadbetter, Lindgren and Rootzen (1983,Chapter12), modified for discrete time by Hogan
and Siegmund (1986), is used. Section 2.4 is concerned with power of the MLRT and

confidence regions for a change point.

Chapter 3 obtains results like those of Chapter 2 for the case in which both the

intercept and the slope change.

In Chapters 2 and 3, numerical approximations of significance levels and powers of
the MLRT and the results of corresponding Monte Carlo experiments are also reported.
The simulations confirm that the theoretical resulis perform well and demonstrate that
the results derived under the assumption that variance is known also can be applied to

the unknown variance case.

Finally, the Appendix reviews several basic facts concerning the convergence of
stochastic processes and discusses Siegmund’s (1986) results which are used in Chapters

2 and 3.
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Chapter 2

Change in Intercept Alone

2.1. Models and Test Statistics

Let (z,,y,), j=1,....m, be a sequence of m pairs of observations such that
y; = al)+Bz,+¢, , where al’)’s and 3 are unknown parameters and ¢;’s are independently

and normally distributed with mean O and constant variance o2.

Consider the problem of testing the null hypothesis that the data follow one simple
linear regression against the alternative hypothesis that there is a change only in the

intercept term. Then the hypotheses can be described more formally as
Ho : o) = a, j=1,...,m,

H : 3 1<p<m such that

a? = ap, i=1...,p,
) = ay, J=p+1,...,m,
where oy # a3 .

For the simple case of 3 = 0, this problem becomes a test for a single change in the
mean of normal random variables with constant variance. Many papers have investigated
this type of change-point problem, in particulaa Gardner (1969), Hinkley (1970), Hawkins
(1977), Siegmund (1986}, and James, James, and Siegmund (1987). Now if there is a
covariate which has a constant effect on the y;'s, the two-phase regression model introduced
above could describe the situation. This kind of two-phase regression model can be used to
describe the relationship between household consumption and disposable income by the

household. Household consumption cannot be explained simply by disposable income of

il b o
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3 the household. Many other variables such as age, sex, race, and education of the family

3 . .

| g head, may also affect the level of consumption expenditures of the household. For example,

.‘ consumption patterns according to the age of the family head may be very different. If a :
- sample survey of a household was made for a period including the year when the children e
1 of the family began to live independently, then the data might be plotted as in Fig.1.

)
', )
¥ This testing problem was first studied by Maronna and Yohai (1978). They studied
the LRT and also discussed some applications in meteorology. In the next section their

R ' approach and some results will be discussed.
; :
: /
3 In this section, we derive the LRS for cases of known and unknown 02 and study the

j null and alternative distributions of the LRS. When o2 is known, 0? can be assumed to ;
; . be equal to 1 without loss of generality. Then -2log(likelihood ratio) statistic for testing
D" 3
» Hg against the alternative that a change occurred at 1 is proportional to
N
B

3 N 1

L im — i) — I~ Fi

2 | Um(i/m) I _ {mm—l i} | Q:r,m(ym %) er,m( 'm ) | . .
\ {ng,m = Qzzm(Tm - .i,')zmz/(m - 1)} : X
, . . . -k ‘
:'.: = |d,~—é:|{[l —(i‘m-fg)zml/{(m")Q::-—.}]m/{’(m“ 1)}} i ,
) :

-
By
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-~
RS
S
where o
, . »
t 1 Y
2= ()_z,)/i, =)/, "
=1 =1 ;
m m
=() z,)/(m-1i), =0 y)lim=i),
j=i+l j=itl
m m >
Qrzom = Z (Ij - irn)z’ Qz‘y.m = Z(zj -Im )(yj - Im)s :
ﬂ. = sz.m/Q:z.mv G = g - réi'i’ é; = ﬂ: - éf: “
[
Hence the likelihood ratio test (LRT) of Hg against H, can be based on R

Unm(i ) '
lr;aggnl m(i/m) | ha

Slightly more generally, we shall consider the test statistic

M, = max |Un(i/m)], (2.1) W

m95i5m1

where 1 < mp < m; < m. We will call M; as a modified likelihood ratio statistic (MLRS)
and the test based on }M; as a modified likelihood test (MLRT). The MLRT was introduced

by Siegmund (1986) who used the MLRS to test for a change in the mean of a sequence

[ o n

of normal random variables. The introduction of mg and m; in (2.1) can be justified in
terms of the power of the test. Since it is intrinsically difficult to detect a change occurring
near either of the two end points, the LRS pays for its efforts to detect such a change
by having less power at other points. This will be more completely discussed in Section
2.4 with numerical results. Based on the MLRS, Hy is rejected when M, is larger than

some constant. The value of i which maximizes | Up,(i/m) | is the maximum likelihood

...'
"ﬁ“"&

fL o

estimate of the true change point. i '.:c
Even though the assumption of normal random errors with known variance simplifies '.
this problem, theoretical properties of M, are still difficult to characterize. Under Ho,
&; — &} has a normal distribution with mean 0 and variance {1 - (£, — z,)?mi/{(m - R
1)Qzz m}]m/{i(m - 1)}, and so Unm(i/m) has a standard normal distribution for each 1. :
Hence the null distribution of A, is the maximum absolute value ~f a sequence of correlated d
W)
[ §

s o
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!* ~
) standard normal random variables. The covariance between Un(i/m) and Unm(j/m) for
t
:: it < j is given by ‘
N } ‘
2 Cov [ Un(i/m),Um(j/m)] = {((jjmiil — j//m))} : . (i/ J/' ) ' T
‘ {Dr(i/m,i/m)Dm(i/m. j/m)}
:' (2.2)
by where
:
‘.l - - - - - - 3 . 0 -
D(i/m.j/m)= 1= (Zm - 2)(Em = 2))mj/[(m = ))Qzzm]  for i< j.

i
:: The derivation of (2.2) will be given in the following section. The null distribution of A, f
:'n depends on the z;’s only through this covariance structure of {Un(i/m)}, not on a.j.

Under the alternative, Un(i/m) is normally distributed and Cov[ Um(i/m),Um(j/m) ]
) remains same as under the null. But now Up(i/m) has non-zero mean for all ¢, which is
D
! given by
%
¢ , i(1 = p/m)Dm(i/fm,p/m ) !

E(Un(i/m)] = —0m/MDnl/mpIT) (o, 0y, igs

: {i(1 = i/m)Dm(i/m,i/m)}* (2.3)
K 1-i/m)Dy(i/m,p/m . '
. _ _p(-i/m)Dm(i/m,p/ ),_(az—a:), i> o
3 {i(l——i/m)Dm(i/m,i/m)}2
By

So the alternative distribution of M, depends on the unknown parameter a; — a; and the
K
) »
% unknown change point p. One interesting property of the test statistic is that a nuisance
g parameter p is present only under the alternative. This property makes analysis difficult )

since the standard chi-square approximation of -2log(likelihood ratio) can not be applied
\ in this case. !
:
9 q
;: If 02 is unknown, the LRS is proportional to 4
: ! - - . "

max { m?i }2 i Q:z.m(ym = yi) - Qty.m(Im - %) |

r . — . . 1
¥ 1gicm Am =t {[ngm - Qzzm(Em — £)?mi/(m — ’)](Qva - ng,m/Qx:t',m)}2

el -
¥

=D |Um(i/m)l/6

s

where ¢ = (Qyym — @3y /Qzzm)/m.

L.
- "

-
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o
Again we consider the generalization el
4
. . - )
My= max |Un(i/m)| /6= max |Un(i/m)l, 3
where Un(ifm) = Un(i/m) /&
Under Hg, Un(i/m) has a standard normal distribution and 62m has a chi-square distri- :;:
. . 5
bution with m-2 degrees of freedom. Since Un,(i/m) and & are not independent in general A
o
and the distribution of Un,(i/m) depends on the z,’s through the complicated covariance !f

structure, it is difficult to find the exact distribution of M,.

S

The dependence of test statistics on the values of the independent variable is one of

R EEEL I WYL,

difficulties that must be handled as well as the maximization involved in the definition of

2.

the test statistics. By simulation, Beckman and Cook (1979) pointed out that the influence -
of the configuration of the values of the independent variable is non-negligible and the o
percentiles of the test statistic increase as the variance of the configuration increases. .n.:{
In the following sections, we will study the asymptotic behavior of the MLRS, especially i
behavior of the significance level, and will discuss the effect of the spacings of the values ..": }
of the independent variable. ' E" ]
A
2.2. Asymptotic Behavior of Test Statistics °,
'
In this section, we study asymptotic properties of test statistics when the indepen- X
dent variable is random as well as fixed. The regression model which involves a random T’ o
b

independent variable was introduced by Maronna and Yohai (1978). This model is appro-

--.‘

2 T 3

priate when the dependent variable may undergo a systematic change at some unknown

Y
point, while the independent variable does not change and affects the dependent variable ‘?:
through the correlation between the independent and dependent variable. Maronna and :'.
Yohai gave an example of such a situation in meteorology, as follows. Let x and y be two o
nearby meteorological stations. The measurements might be mean annual precipitations ;;.
and it might be desired to test the hypothesis that the only fluctuations are those due to :t
the intrinsic randomness of the magnitude being measured. against the alternative that ? .
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a systematic change has occurred at one of the stations after some point, due to unregis-

tered changes in the measurement apparatus or the location of the station.

In Section 2.2.1, we study the case in which the independent variable is random. Also,
the asymptotic behavior of the MLRS is considered conditionally on the z;’s. Section
2.2.2 deals with the case of fixed values of the independent variable. Starting from the
special case where the values of the independent variable are uniformly spaced, as *hey
would be if the independent variable is time and observations are made at equal intervals
of time, we study the limiting behavior of the MLRS under a mild assumption about the
empirical distribution of the independent variable. In Section 2.1, the LRS was derived
assuming that the ¢,’s are identically and normally distributed. The asymptotic results to

be discussed in Sections 2.2 and 2.3 holds even in the case of a general error distribution.
2.2.1. When the independent variable is random

Maronna and Yohai (1978) considered the case in which both the independent and
dependent variables are random and they studied the limiting distribution under the null
hypothesis. Since the LRS does not depend on the slope under the null hypothesis, the
independent variable can be taken to be independent of the dependent variable. They gave
the percentiles of the LRS when (z,y) has a bivariate normal distribution with 0 mean
vector and identity covariance matrix, obtained by the Monte Carlo method. Their main
result is about the limiting distribution of the test statistic, which will be stated in the
following theorem. It was shown that the LRS tends to oc as m — oo in their paper. Here,
we consider the MLRS and show the convergence of the MLRS in distribution. Basically
this theorem was proved by Maronna and Yohai, but their proof is not complete in some
of the details concerned with the convergence of the stochastic process. In our proof, we
consider the “convergence in distribution” in the space C = C|0, 1] of continuous functions

on [0, 1], equipped with a o-field C and the uniform metric.
Notation. Let W(i/m) be a discrete time stochastic process defined at i = i,...,m.
Then W€ denotes a process which is continuous in [0, 1], equals W at i/m (i = 1,...,m)

and is linear in each interval (i/m,(i+1)/m) .

. n T T -y . U e L N A i - R e L o o N . .
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Lemma 2.2.1.

Let {v,} be a sequence of i.i.d. random variables such that E{v;?] = 1. Define

W2(i/m) = (% — 9m)i//m, where % = (¥}, v;)/i. Then as m — oo,

woe . wo in distribution, (2.4)

where W0 is a Brownian bridge process.

Proof : Define W,,(i/m) = t;i/\/m and WE (1) to be a continuous process constructed
by linear interpolation. By Donsker's Theorem, WS — W in distribution, where W
is a standard Brownian motion. Since a mapping H such that (W) = WS¢ and
H(W) = WO is continuous, by the continuous mapping theorem of weak convergence,

(2.4) holds. 8

Theorem 2.2.2.

Let (z1,%1)s.--+(Zm.ym) be i.i.d. random variables such that E[z,?] < oo and

E[y12] < <.
Under Hp. as m — oc and i/m — ¢,

U0 (i/m) _ Wo(t)
{Gi/m)1-ifm} {u1-o)?

in distribution,

Um(i/m) =

where W0 is a Brownian bridge process.

And so, as m — o0 and m;/m — t; fori=0,1,

M, = max | Un(i/m) | T —  max —l—ml—- in distribution. (2.5)
mo<igmy {(z/m)(l - i/m)}’ o <t<ty {t(l - t)}%
Proof :

(i) Note that U2 (i/m) can be rewritten as

(By(i/m) — Ba(i/m)Qeyam/Qozaml/ { Dm(i/m.i/m)}},

() FRTVE 0 VA VRTAVA TR ET A 0. R LN,

e
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%
o
N

where

L]
L

By(i/m) = (§m - %i)i/Vm,
Bz(i/m) = (5m - it)i/\/n—‘e
Dp(ifm,i/m) =1 = [B:(i/m)*/ {Qzzm(i/m)(1 - i/m)}.

W T ]

>
(i1) It may be assumed without loss of generality that E{z;] = E[y] = 0 and E[z?] = a
Elyl=1and =0. t_;.

by

7

Then the Law of Large Numbers implies that

Qrzm/m—1, Qzym/m—0 in probability.

-p.f' e

]

By the previous lemma.
o

BS— WP, BS—W? in distribution, f.'.

and hence o
e

D, —1 in probability,

P
AW

-

where WP and WY are two independent Brownian bridges.

T

Then the continuous mapping theorem implies that as m — oc, " !

o ‘.‘

roe - wo in distribition. :;

1 {,‘

(iii) Using the continuity of the mapping from Z to max <¢<e, | Z(t)|/{t(1-1)}? for Z € C, o
.

Um'(t wo(t .,

ax BRIHULN — max 1——()‘—, in distribution, as m — . ;

e <ty {t(l _ t)}% to<t<ty {t(l - t)}5

(iv) However, since

»0,¢ .
iy AUEOL o UR(/m)]

: 10
WSSt (41 - )}} T SIS {(i/m)(1 ~ ifm)}
we still need to show that for any positive ¢,

Pr{ >e} < €.

By the definition of USC. this is easily obtained. Then by (i),(ii),(iii), and (iv), the proof

yO.c .
L TR UsGi/m) |

to<1<ty {t(l _ t)}% mo <i<m; {(i/m)(l - t/m)}%

is completed. @
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Corollary 2.2.3.

Under the same assumption as in Theorem 2.2.2,

in distribution.

M; = max | Um(i/m) | — max ——————' Woe) |
meSiSm {(ifm)(1- ifm)}} eSS {1 - o}t

Proof : Since 62 is a consistent estimator of 0? and M; = M, /&, M; converges to the

same limit as in (2.5) by the Slutsky’s Lemma. 8

Now we will consider the conditional test for Hy. This conditional test is based
on the same test statistics. M, or M;, but the rejection threshold depends on the z;’s,
which are ancillary. In the following theorem, the asymptotic behavior of the MLRS will

be considered conditionally on the z;'s when the z;’s are a random sample from some

distribution.

Theorem 2.2.4.

Let v; = (z;,y;), 7 = 1.....m, be a sequence of i.i.d. random vectors such that

Elv,} = p, and E[v;v]= L.

Under Hg, as m — oc and m;/m — t; for : = 0, 1, conditionally given z;,7z2, -,

in distribution,

Mo ma TREIL L 1w
mo<i<m, {(i/m)(l _ 1/m)}§ to<t<ty {t(l _ i)}’
with probability 1.

Proof : This theorem is proved by basically the same argument as in the proof of Theorem

2.2.2. Note that

U (if/m) _ Zn(ifm) _ R (i/m)
(G/m)1 - i/m)E T {(/m) - ifm)}E {(i7m)(1 = i/m)}?
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1 where

S = Z(yj -3z, - a),

y=1
B; = :fm -2)i/vm, B=Q:iym/Qzzm
Zm(i/m) = [Si = Smi/m]/[VmDm(i[m,i/m)],
Rn(i/m) = (3 = 3)B:(i/m)/Dm(i/m,i/m)
D (i/m,ifm) =1~ [Be(i/m)P/{Qezm(i/m)(1 - i/m)}.

; Then a.e. in z, as m — 20,

(i) Z5, — W° in distribution,
(1) maxXmoci<m, Rm(i/m) — 0 in probability,

(iii) For any positive ¢,

Pr{ _ﬂ}_)_l__ - max | Zm(/m) | | > e} < e.

PoomeSitm {(i/m)(1 - i/m)} ¥
Combining these results, proof is completed.

max
StSh f1(1 - 1)}

In proving Theorem 2.2.4, the necessary properties of the z,’s are

m m
(Z:cj)/m—oa and (E:?)/m—»b ae.
j=1 1=1
, In particular,
’ Fm—%3,—0 as m— oc and 1 — oc.

By the Theorems 2.2.2 and 2.2.4, it can be said that if the values of the independent
variable are from some distribution, then the test statistic converges to the same limiting

distribution whether we consider the test as the conditional or the unconditional one.
2.2.2. When the independent variable is fixed

In the previous section, we considered a case where (z;,y;) has a bivariate distribution
such that E[z?] < oo and E[y?] < oc. As a conditional test, we needed the convergence

of the first and second moments of the independent variable to get the above limiting

e e §0 &
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TR R R N S T R N R T AV ¥ A A LA T T P A ORI A AP NI R

2,

vl

~r

TET .
o o

- r - ey
X X N A

L LLEL P

_'.’. [ "')'5"- ¥t n]-‘,‘-’ g - "5’"‘""“ % 1

-

)



R O R L R T T ., "at Sag Sat ), “uap vop et 0a B 0a8 el a0 @ a0 5"t 08, 8'0. 8 - TRUTIY VYT

O - - "
U
. . l::::‘
iy
@
o
1,
Section 2.2: Asymptotic Behavior of Test Statistics 17 3 .::
o
ot
distribution. However, the independent variable is fixed in most applications and does
not satisfy this condition in general. This section deals with asymptotic properties of ) .,&
‘x
the MLRS when the independent variable is fixed. We begin with the case in which the :‘:
W
values of the independent variable are uniformly spaced. If z; = j/mfor j = 1,...,m, "':..'E:
then %,, - #; = (1 —i/m)/2 /4 0 any more and so the limiting distribution is not the same oaags
N
as in the previous section. First, we shall assume that o2 is known and hence without loss N
SV
of generality equals one. Under the null hypothesis, we can write U9 (i/m) as a weighted tj
sum of ¢,'s to prove Theorem 2.2.6 : -;\
. o
Q- _ '(!
Um(t/m) = z:lai.kfks .:‘:::
= 4
‘I.'::
where !"'
i m—i (% - Zm)(Tk — Em) 0
Gk = { — - == '"}, k<i ';‘
{mDm(i/m,i/m)}% mi Qrzm :;
; = = — \
— 1 l{_i_(zi"zm)(zk‘xm)}’ k> i, .)::
{mDn(i/m,i/m)}: L ™ Qzzm
"‘
D, (i/m,j/m)=1=(Zn — Z)(Em — Z;)mj[{Qzz(m — j)} for j > i. o
' (2.6) )
"
Lemma 2.2.5. o
@
<
Let n > 2 and {Xm = (X1m,---+Xn.m)} be a sequence of random elements of ﬂ
)
X7_,Ck, (where Cix = C[0,1]) equipped with a product o- field x}_, Bi. :E'ﬁ
A
!"f
The sequence {X,,} is tight if and only if the n sets of marginal distributions,{ X1 m}, \J.?‘-r
veos {Xnm}, are tight in Cy,...,Cy. ¥
"::'
t
Proof : Suppose that the sequence {Xm = (X1,m,-.., Xn,m)} is tight. Then there exists i "“
l‘.
a compact set K in x}_, Bi such that X
@
’
Pr{X; € K} >1~-¢ forall X; € {Xn}. o
. X
Let h; be the mapping that carries the point p = (p1,...,pn) in X7 B; to p, in B, for o
i =1,....n. Since h; is continuous for all i, K’ = h;K is compact and so R7'R' D K. ."
N
Y
P. t
T
S
‘V. L .i‘. v - --‘(n L R AT IR LA PR LS LA e L% - LR 1'\)‘\ﬁ1' A S T 2% Te e il h'\-‘i';‘\!
I SN A N R N ™ i L WG RN, GG RER I AL G, W%, A )y LN ' i M ]
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Pr{X;; € K’} =Pr{X; € h7'R'} > Pr{X; e K} > 1 —¢,

which implies that the sequences, {X;m},..., {Xnm} are tight. |

A -
e ™ s

Conversely, suppose that {X; m},...,{Xnm} are tight sequences of random elements. "

Choose a positive €. Then for each i, there exists a compact set K, in B, such that

Pr{X,; € Ki}>1-¢/n, foral X;; € {X,m}.

Let K = N, A7 'A,. Then K is compact and

Pr{X; €K} >1-) Pr{Xi; ¢ Ki} > 1-¢ forall X; € {Xnm}.

1=1

e s

Hence {X,} is a tight sequence of random elements. §

|

;

) !
v Theorem 2.2.6. :
s ",
A Suppose that z; = j/mfor j =1,...,m. ':
\ {

Under Hy,as m — oc and m;/m — ¢; fori=0,1,

; _ _— . , o dt et \
! M, = morgiasxml V Un(i/m) | torgta‘x«ll U(t) | in distribution, (2.7) it

where U is a Gaussian process with mean 0 and a covariance function,

) i

R (1-38))° D(s,t) ‘

? Cov [U(1).U(s)] = { 3

: ov | s) ] {s(l— t)} {D(t,t)D(s,s)}% E
= o(t, ), :

where D(s,t)=1-3s(1—~1t) for t<s.

Proof : Recall that

Zm(i/m) _ Rp(ifm)

. . 1 . . 1
{(i/m)1~ifm)}*  {(i/m)(1-i/m)}?
] where Z,, and R,, are defined in the proof of Theorem 2.2.4. By Theorem A 1.1, to show

Um(i/m) =

2

R that Z¢, — RS, converges in distribution, we have only to check that the finite dimensional

distributions converge in distribution and the sequence is tight. It can be easily shown

R e e e e T T Ty i e OAN
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that {Z<} and {RS,} are tight. To prove the finite dimensional distributions of Z¢, — RS,
converge to those of U? where U'? is a Gaussian process with mean vector 0 and covariance
matrix A to be defined later, we will show that for any sets of (ry,...,r,) and (¢;,..., 1)

such that (i3/m,....in/m) — (t;....,tn) as m — o0,
E[exp{ink(Zf,,(ik/m) ~ R (ix/m))}] — E[exp{in;,U"(tk)}] as m — oo.
k=1 k=1

By using (2.6),

n

Elexp{i Y ri( Z5(ix/m) = Ri(ix/m)}) = Elexp{i D_ Y raa, ;¢, }]

k=1 k=1 3=1
= Elexpi(b'e)],
where b = (by,...,bn) with b, = YL, rkai,,, and € = (ey,...,6m). Now elementary

algebra shows that

m

Z bf — r'Ar,

=1
where ¢’/ = (ry,...,74) , and A is a matrix whose (k,l)-th entry is o(tx. t;){te(1 — tx)t:)(1 -

t;)}3. Hence this implies that

(Z5, (1 /m) ~ RS, (in/m),....Z5(in/m) = Ry (in/m))
— (U%ty),...,U%tn)) in distribution.

Now tightness of the sequence {Z5 — R:} follows from Lemma 2.2.5 and Lemma 7
(Billingsley, 196%). Thus Z5, — RS, converges to U in distribution.

By the continuous mapping theorem,

Uo(t S
M, — max -—|———(~)—|—— in distribution.

to<t<y {t(l - t)}%

It is evident that U°(2)/{t(1 - t)}% is a Gaussian process. Since a Gaussian process is

completely determined by mean vector and covariance matrix, (2.7) holds. @

Now we will generalize this result to the case where z; = f(j/m) for some integrable

function f.
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Section 2.2: Asymptotic Behavior of Test Statistics 20

Lemma 2.2.7.

Suppose that z, = f(j/m) j = 1,...,m, for some integrable function f such that

f(0)=0and f(1)=1.

Then for i < j,as i/m—1t, j/m — s, m — oo,

(i/m)(1 - j/m)}* Do (ifm,j/m)

CovlUn(i/m), Un(3/m)] = {(J'/m)(1 =i/m)} {p,.(i/m,i/m)Dn(j/m,j/m)}}

where
gm(i/m) = (fm - ii)/{(l - i/m)v er/m}~
Dm(ifm,j/m)=1=(Em — £,)(Em — Z,)mj/{Qrz(m - j)}

=1-(j/m)(1 = i/m)gm(i/m)gm(j/m)  forj>i.

~ {t(l - s)}§' D(t, s) (28)

s(1-1) {D(t,t)D(s,s)}l?"

where

JY flurdu = [f) flu)du))t
1
(1= O{f} f2(u)du - [ fw)du]'}?
D(t,s) =1~ s(1-1t)g(t)g(s) for s > t.

g(t) =

Proof : First we will derive Cov[Un(i/m),Un(j/m)] for i < j. Note that Usn(i/m) can

be written as

(G = ) = (Em = 2)Qeym/@szml/ { Dmlifm, ifm)(m = )/ (mi)} .

Assuming the ¢,’s are normally distributed with mean 0 and variance 1, it can be easily

shown that

( Ym — i ) N ( (B(Em e .2,)) ( (n‘ - i\)/’('ni) (frn - fi)/Qrz‘.m ) )
(i‘m - ii)B ‘ B(jm - ii) ’ (Zm — fi)/Q:.t,m ("Em - fi)g/Qz‘:.m ‘
where B = Q:y.m /Qrz,m-

Also it is straightforward to show

Cov [§m = §ir Jm = §,] = (m = §)/(mi).
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Thus
s ey [ Em)( = jfm)\ Dum(i/m, j/m)
Since ,
Im—Zi= Y f(kfm)/m =Y f(k/m)/i
k=1 k=1
and

m m 2
Qaem = ) S(k/m) = [ D f(k/m)] /m,
k=1 k=1
it can be easily shown that g,(i/m) — g(t) as m — oc, i — oo. Then (2.8) follows

immediately. @

Lemma 2.2.7 says that the test statistic depends on the z;’s only through the function,
gm- When z; = j/m, gn(j/m) = /3 for all j. The same argument as in the proof of
Theorem 2.2.6 leads to the following theorem.

Theorem 2.2.8.

Suppose that z; = f(j/m) j = 1,...,m, for some integrable function f such that

f(0)=0and f(1)=1.

Under Hy. as m — oc and m;/m — t; for : = 0,1,

M, = moxg?gcm | Un(i/m}| — tons'ntaxg1 { U(t) | in distribution, (2.9)

where U is a Gaussian process with mean 0 and a covariance function

t(1 - s)}§ D(s.t)
A=) (D1, 0D(s, )}

Cov [ U(),U(s) ] = {
= o(t, ),
where D(s.t) = 1 — s(1 — t)g(t)g(s) for t < s.
Corollary 2.2.9.

Under the same assumption as in Theorem 2.2.8,

M3 = max U, (i/m)|— max | U(t in distribution.
2= max | Gnifm) |~ max |U()]
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Remark 2.1. Comparing with the case in which the independent variable is random, we
see that D(t,.s)/{D(t,t)D(s,s)}% is an additional factor in the covariance of the limiting
process. Since the mean and variance remain the same, the configuration of the values of
the independent variable affect the distribution of the MLRS only through this additional

term in the covariance function.

Remark 2.2. Since the limiting distribution of the MLRS in (2.5) involves Brownian
motion, the stochastic process in that limit has non-differentiable sample paths. In the

case of the fixed independent variable, U in (2.7) also has non-differentiable sample paths.
2.3. Approximations to Significance Levels

As described in Section 2.1, the exact distributions of the test statistics are quite
difficult to analyse. In this section, we give approximations to the right-hand tail of
the null distributions of M; and M; and perform Monte Carlo experiments to see how
accurate these approximations are. As in Section 2.2, we first consider the case in which
the z;’s are random and then the case where the z;’s are fixed. In both cases, we study
the significance levels as boundary crossing probabilities by discrete stochastic processes
with nondifferentiable sample paths. Approximations to significance levels are derived for
the MLRS with known variance. M;, and will be discussed how well this can be applied

to the unknown variance case.
2.3.1. When the independent variable is random

When the independent variable is random, Theorem 2.2.2 shows that the MLRS, Af;.
converges to
to?%x -{—‘t(‘:’j——(—tt;-}% , in distribution,
where W0 is a Brownian bridge process on [0,1) and m,;/m — t,, fori = 0,1, as m — oc.
Thus the significance level of the test, Pr{M; > b}, can be approximated by that of this

limiting distribution. Siegmund(1986) provides the approximation to

Pr{ max | W) [/{t(1 - 1)}} > 8}.

to<t<ty
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which is quite general since it can be applied also if the underlying distribution of the
observations is not normal. However Table 1 shows that this approximation overestimates
the actual values about 200 %. In Table 1 and in other tables, we obtained the percentiles
by a Monte Carlo experiment using simple random sampling with 10,000 samples for each
situation. As a correction for discrete time, (19) in James, James, and Siegmund (1987)
was used and that result is also summarized in Table 1. This discrete approximation does

not perform perfectly but it gives a rough idea about the significance level.

Table 2 concerns the MLRS with unknown variance, M,. Using (21) in James, James,
and Siegmund (1987), a similar kind of result is obtained. The numbers in parenthesis
are the approximations to the significance levels of M; using the approximation derived
for the known variance case. This gives some insight about whether the approximation
derived for the known variance case can be applied to the unknown variance case. Since
in the next section we will derive an approximation to the significance level of M; when
the independent variable is fixed and see how that works for the unknown variance case,

we will discuss this more later.
2.3.2. When the independent variable is fixed

As we can see in Theorem 2.2.6 and Theorem 2.2.8, the limiting distribution is
not a function of a Brownian motion but involves a different Gaussian process when
the independent variable is fixed. In this section, in order to get an approximation to
the significance level of M;, we begin with the case where z; = j/m and later consider
more general configurations of the independent variable. In principle, Durbin (1985) gave
approximation formula to the probability of boundary crossing by a continuous Gaussian
process satisfying some conditions. However as before these are not accurate since these

did not take discreteness into consideration.

The main result of this section is a new approximation taking discreteness into ac-
count. Assuming the normality of the error variable, we can consider the significance
level of M; as a boundary crossing probability by the Gaussian process, U, defined

on {i : mg < i < m}. As discussed before, our Gaussian process is nonstationary and
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)
nondifferentiable. To approximate the boundary crossing probability by the discrete I‘
S . . )
stochastic process whose limiting process has a non-differentiable sample path, the ar- :-.“
Kt
gument in Leadbetter, Lindgren and Rootzen(1983, Chapter 12), as modified for discrete ey
4
time by Hogan and Siegmund (1986), will be used. We start with the given discrete A
time Gaussian process and derive an approximation to the boundary crossing probabil- N
L}
ity by this discrete process as the sample size gets large. In Leadbetter, Lindgren and e
-
Rootzen (1983, Chapterl?2), their goal is to approximate the boundary crossing proba- R‘;
o
bility by a non-differentiable continuous Gaussian process. They considered the prob- o
bt
ability of crossing the boundary by the given process at discrete instants of time first :::«
“5
and let the interval of each time points get smaller and smaller . Actually we get the .“;
by
same result if we consider the continuous limiting process and find an asymptotic ex-
C oyl Y
pression for the boundary crossing probability by this limiting process observed only at -
'
the discrete instants of time. From Lemma 2.3.1 through Theorem 2.3.5, it is assumed :;{
.I
z; = j/mfor j =1,...,m, and to obtain nontrivial limits as 6 — 0o, we use the normal- E:
ized process, Uy . (i) = 8(Up(t +i/m) —b), where b?/m — a. In order to state approxima- _' ’
tions to the significance levels in Theorems 2.3.5 and 2.3.7, it is helpful to introduce the :'.: :
Y
function ;-. t
= 1 o
v(r) = 227 2 exp{-2 Z n'lé(—izn%)}, (z >0) (2.10) b
n=1 4,
where ¢ denotes the standard normal distribution function. The function v was used :r-;

G

by Siegmund (1985) and is easily evaluated numerically by (2.10) or approximately as

Lo & Y,..
CACA

suggested in Siegmund (1985, ChX).

®
Lemma 2.3.1. e
Suppose that z; = j/mfor j=1,...,m. :'-;'.:

Let U{, (i) = b(Un(t + i/m) — b), and suppose m — oo , b — oo 50 that b?/m — a.

P
5

Then, the conditional distributions of Uy, (1) given that Uy (0) = z are normal with

Nt

« -
A

A
A4,

)
»

E[U (i) = 2|0} 0 (0) = 2] = —pa(t)i + o(1), (2.11)

[y

Cov [U} (i) = 2, Uf n(j) = 2|Uf u(0) = z] = 2u1; min(i. j) + o(1). (2.12)

é&f"-
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where ua(t) = a/[2t(1 — t){1 - 3t(1 - t)}].
Proof : Using Taylor series expansion of covariance functions and doing a tedious calcu-

lation, (2.11) and (2.12) are obtained.

The first step in our derivation to the distribution of M), is to consider the maximum

taken over a fixed number of points, t,t + 1/m,...,t + n/m.
Lemma 2.3.2.

For fixed n and a, as b — oc and m — oc,

3(b)

Pr{oxgiazxn Un(t+i/m)> b}/[——b—] —~ 14 Hq(t,n), (2.13)

where
0
H.(t,n) = / exp(—z)Pr{orEagc Yi(i) > z}dz,
-n0 Si1sn
and Y[(i) is a partial sum of i.i.d. random variables with
Y, (1) ~ N(=ha(t), 2pa(1)).

Proof : Since the conditional distribution is normal, it is determined by its mean and

covariance. Then the previous lemma implies the limiting process can be represented by
Y (i) = aa()W (i) = palt)i,

where W is a standard Brownian motion and o2(t) = 2u.(t).

Then, following the same argument in Lemma 12.2.3 of Leadbetter, Lindgren, and Rootzen

(1983),(2.13) holds. &

Lemma 2.3.3.

There exists a function H;(t) such that

lim H,(t,n)/n= H(t) uniform!v in t.
N—s0C
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As b — o and m — oc,

3}
Pr{ max, Un(i/m) 2 b}/ [""’(")l—‘/to H:(t)dt/a. (2.14)
Proof : Let |
B; = {kﬂs}g?ﬁ”" Um(i/m) > b}

= {0'2{‘5’51 Un(kn/m +i/m) > b}

Then it can be shown that

K,
Pr{ max Un(i/m) > b} ~ ZP{Bk},

te<i/m<t Py~
=Ko

where | Kon] = mo, |K1n) = my, and |z] denotes the greatest integer which is less than

x.

By Lemma 2.3.2,

K, K
> P{Bi} ~ [6(b)/8] 3 [1+ Ha(kn/m,n)]

k=Kp k=Ko

K,
~ bd(b)[1/na+ Y Ha(kn/m,n)/b?].
k=Ko .

And thus

Pr{ max Um(i/m) 2> b}/[bo(b)]

to<i/m<n
K,
~ 1/na+ E Ha(kn/m,n)/b?
k=Ko
ty
~ l/na+/ H.(t,n)dt/(na)
to

The proof is completed by letting n — oc and proceeding as in Lemma 12.2.4 of Leadbet-

ter, Lindgren, and Rootzen (1983). @

The last step is to evaluate H in (2.14). In evaluating H, we use the argument

in Siegmund (1985. Ch VIII), which leads to the derivation of the boundary crossing

probability by a random walk with unit variance.
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Lemma 2.3.4.

[ " H:(1)dt/a = / ' ha(t)(2us(t)] dt /a, (2.15)

to

where
Ha(t) = a/[2t(1 - t){1 — 3¢(1 - 1)}],

ua(t) = {ua(t)/2},

Proof : Note that

0
Hy(t,n) = / exp(—z)Pr{orLla<x Yi(i) > z}dz,

- 00

where Y}(i) is a partial sum of i-i.i.d.random variables defined in Lemma 2.3.2. Let

a"(1) = Y}(1)/04(t) to make the variance equal to 1.

Then the Wald’s likelihood ratio identity implies that

Ho(tom) = [ explyoa(0] Pr{max Yi7(0) 2 v}y,

= 0a(t) /0 " Elexp(-2ul(t)Ry} : T, < nldy,

where
T,=inf{n>21:Y\(n) >y},
R, = Y& '(T,) - y.

Hence it suffices to evaluate the limit as n — oo of
o0
w7 [ Bl {-230R,} 5 Ty < nldy.
By the same argument in Lemma 3.4 of Hogan and Siegmund (1986 ), this is approximated

by ua(t)v{2u5(t)]. as n — oc. Therefore (2.15) holds. B

By combining Lemmas 2.3.1, 2.3.2, 2.3.3, and 2.3.4, we obtain the following approxi-
mation to the tail of the distribution of the maximum, M; = maXmy<i<m; Um(i/m), over

an interval [mq, m,].
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Theorem 2.3.5.

Assume that b — o0, mp — o0, m; — o0, and m — oo in such a way that for some

O0<tg<tj<landa>0

mi/m—1t;, t=0,1 and b’/m — a.

Then as m — oc,

t

Pr{ max Un(i/m)>b} ~ bo(b) 1 v[2u; (1) ua(t)dt/a,

mo<i<m to

where

pa(t) = a/[t(1 = t)}{1 - 3¢(1 - t)}],

ua() = {ua(t)/2) 3 /2.
Remark 2.3. When z; = j/m, j = 1,...,m, the significance level of the test can be
approximated by

Pr{ max |Um(i/m)| 2 b}~ 2Pr{ max Un(i/m) 2 b}
moSism,

mo<i<m,

~ bo(b) / ' Qua(t)l2uz(0)]dt/a. (2.16)

Table 3 gives an indication of the accuracy of (2.16). As before, percentiles of M), b,,
were obtained by the same kind of Monte Carlo experiment. Table 3 also indicates that
the approximation (2.16) can be applied to the unknown variance case. In Table 3, b; are
the percentiles of M, for various sample sizes and it can be said that approximations are
reasonably accurate if sample sizes are big enough and a < 0.1. Since the case of z; = j/m
can be applied to the regression model in which z are equally spaced time points, which
arises often in statistical analysis, we provide in Table 4 the tail probabilities of M; when

z; = j/m under Ho.

In the remaining part of this section, an approximation to the significance level for a
general configuration of the values of the z;’s will be derived and numerical results will be

presented. Proofs will be omitted since they follow closely tho:e¢ of the previous theorem.
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Lemma 2.3.6.

Suppose that z; = f(j/m), j = 1,...,m, for some integrable function f such that
f(0)=0and f(1) = 1.

Then as m — oo and b — oo in such a way that b?/m — a,

E(U§ (%) = 2{Uy m(0) = 2] — —pa(2), (2.17)

Cov [Uf (i) = 2, U (3) = 2|Ufpn(0) = 2] — 2p4(t) min(i, 5), (2.18)

where po(t) = af[2t(1 ~ t){1 — g*(t)t(1 - t)}], and g was defined in Lemma 2.2.6.

Proof : (2.17) and (2.18) directly follow from a long calculation. &

Theorem 2.3.7.

Suppose that z; = f(j/m), j = 1,...,m, for some integrable function f such that
f(0)=0and f(1)=1.
Assume that b — oc, mg — o, m; — oo, and m — oo in such a way that for some

O0<tg<tj<landa>0

mi/m —~t;, i=0.1 andb?’/m - a.

Then as m — oc,
Pr{ max |Um(i/m)| 2 b}
mo<Lisin,

~bo(8) [ vz O}/ - 01 - 01 - O, (219)

where u3(t) = {a/[t(1 - t){1 - g*(t)2(1 - f)}]}%/l

Table 5 supports that the theoretical approximation (2.19) is quite accurate when
z; = (j/m)% In Table 5, p, is obtained for f(z) = z%. and p; is the approximation using
the linear interpolation of the z,’s as f. We get the percentiles for unknown variance case
by Monte Carlo method and approximates significance levels using the approximation

formula derived for known variance case. Even though they are not perfect. a rough idea

about the tail probability can be obtained from them.
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2.4. Powers and Confidence Regions

In this section we follow the arguments of James, James, and Siegmund(1987) to
obtain an approximation to the power of (2.1). We derive an approximation of the power
of (2.1) for the fixed z,’s, starting from the uniformly spaced z;’s. Suppose that we observe
Y1,---,Ym as in section 2.2 and z; = j/m for j = 1,...,m, that there is exactly one
change point, p, only in the intercept term of the regression line and that a;, ¢,, and 3
are unknown parameters. In order to get an intuitive idea of the boundary crossing by the
given stochastic process, we consider a modified stochastic process and a curved boundary
as follows. Let Uz (i) = Unm(i/m){i(1 - i/m)}?. Then from (2.2) and (2.3) it can be easily

seen that the process U (1) (i = mg,...,m) has the mean value,

=N (1 Dm(i/m,p/m) _ .
E[Un(1)] =i(1 P/m){Dm(i/m,i/m)}%(az ), 1<p
_ _ Dm(t/mvp/m) _ .
= p(l 1/m){Dm('/m’:/m)}_21(02 al)s t>p, (220)
and the covariance function for i < j,
Cov [Un (1), Un ()} = i(1 = j/m)rm(i, j) (2.21)

where
Dn(i/m,j/m)=1=(Zm — Z)(Em ~ Z;)Mmj/{Qzz.m(m — j)} fori < j,
Pen(i+3) = Don(i/m, §/m)/{D(i/m,i/m)Dom(i[m,j/m)}E.
Forl <mg< m; <m, let
To = inf{i :i 2 mo, |Un(i)| > b{i(1 - i/m)}}},
(2.22)
Ty = sup{i i < my, [Un(i)| 2 b{i(1 - i/m)}},

and let Pr({”){To < m} = Pr{Ty < m | U (p) = £}. The power of the test defined by
(2.1) is of the form. Pr,{M; > b} = Pr,{To < m;}, where mg < p < m,. It is obvious
that

Pro{To < mi} = Pr{ | Up(p) | 2 b{o(1 - p/m)}}}
+ Pr{ | Usn(p)| < b{p(1 - pfm)}*. To < m1}

Pl
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vol]

= Pr{ | Up(0)| > b{o(1 - p/m)}})

s{p(1-o/m)}} (0) ¥y
/ Pre" {To < my} Pr{U,.(p) € d€} (2.23) e,
~b{o(1-p/m)} .
. o
Since the marginal distribution of Uy, (i) is known, to approximate (2.23) it suffices to ot
approximate the conditional probability in (2.23). To approximate Pr(;){To < m;} we AN
1\- 1

may assume that ‘-::
1 :,\v‘
|61 = b{o(1 - p/m)}? ~ = (2.24) N

@
with z = O(1) as m — oc, since the principal contribution to the integral on the right- v
hand side of (2.23) comes from values of £ close to the boundary value. Given U}, (p) =¢ "4::
oM
of the form (2.24), if | Uz(i)| 2 b{i(1 ~ i/m)}} for some mo < i < p and |US(j)| > "
Y

b{j(1- j/m)}% for some p < j < m,, this event with overwhelming probability occurs for ®
¢
some i and j which are closed to p. Moreover, given U, (p) = £, asymptotically as m — oc '.‘.::‘:
v
the processes U, (i) (i = mo,...,p) and U},(j) (j = p+ 1,...,m;) are conditionally l::::',
o
independent for ¢ and j close to p. Thus we can write YN
Pri{To < mi} = PrlP{To < p} + PrO{T1 > p} = PrOHTo < p} PIOHTY < ). (2.25) N
N
Since both probabilities on the right hand side of (2.25) are of the same form, it is enough :ﬁ
to consider the first one. To approximate the first probability, we assume that m is large oy,
and that p and p — mg are proportional to m. ?-:"
Lemma 2.4.1. :':{

. ®
Let £ = b{p(1 - p/m)}3 - z = m&. For i € p, given U, (p) = £, "
f:‘o‘
as m — oo, p/m — t*, for each fixed i, .0:::
%

- . . o« o1

[ Un(p=1) = u(p—i|p) {D(t",17)}? o _
]
: gt
is distributed approximately as S; = ¥ ;_, 2k, Where z;’s are i.i.d. standard normal

e )
random variables and u(p - i|p) = E[Us(p - i) | Unip) = €], f.:$

@
where D(t*,t*) = 1 - 3t*(1 — t*). “
::t Q
h g
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Proof : Since U, (1) is distributed as N(u(i|p),0%(ilp)) given Un(p) = £, where
u(ilp) = Erm(i, p)i/p,
o?(ilp) = i(1 = i/m) = [rm(i, P)]**(1 - p/m)/p,
it can be easily obtained that as m — o0,

Cov [Un(p — i), Un(p = 7) | Un(p) = £] — min(i, )/ D(t°,17).

Thus [Ug(p = 1) — u(p - i[p)]{D(t‘,t‘)}% behaves like a sum of independent normally

distributed random variables, each having mean 0 and variance 1.

Now we define stopping times 1-0+ and 7, as follows :
¢ = inf{i: i > mo, UL() > b{i(1 ~ i/m)}?},

t = inf{i: i > mo, Us(i) < —b{i(1 - i/m)}}}.

Lemma 2.4.2.

Suppose that b — oc, p — oc, m — oo in such a way that b//m — b, and

p/m — t*. Let z = b{p(1 - p/m)}% -£=0(1).

Then as m — oo,
Prif) {rs < p} = v(2n) exp[-2nz{D(t", ")} #],
and similarly
Pri” {1 < p} & v[2n)exp[-2nz{D(t",1")}}], (2.26)

where 1 = bo/[2{D(t".1*)t*(1 - t*)}}].

Proof : By (2.20) and elementary calculus, it can be seen that for fixed z. 1,

b{(p— 1)1 = (p - D)/ml}E = p(p — i] p) — 2 + ibo/[2D(¢", £ ){t7(1 - )} 3).

At A A A i 5t rcr st e sre e s ot ST .
A R N P A AN A A A L WA A A

R 3 O

e A Sl e
oKy DRC

“%

s

XA AR

actin- N A

WEe
"

SHE LEA LA NI g R



’ + J U

- AB

»

 ig? 8,0 0yt

I WU T U W W W T W W W W U S L N o e N ~ata a0 alh'

Section 2.4: Powers and Confidence Regions 33

From Lemmas 2.4.1,
Pri{rs < o} = PrE{UL(p — i) = w(p = ilp) > b{(p - )(1 = (p ~ i)/ m)}} — (o - ilp)
for some 1 < i < p~ mg}

— Pro{S: > in+ J:{D(t',t')}% for some i > 1},

where n = bo/[2{D(t*,t")t"(1 - t‘)}%] and S; was given in Lemma 2.4.1. Therefore this

conditional probability is approximately the same as
Pr_,{S] >y forsomei> 1},

where S is a partial sum of the i.i.d.random variables, each having mean —n and variance
1and y = z{D(t',t')}f. Following the argument in Siegmund (1986, Ch VIII), this
probability can be approximated by v(2n) exp[-2nz{D(t", t‘)}%], which can be used as an

approximation to the conditional probability in (2.23). @

Theorem 2.4.3.

Suppose that b — 00, p — 00, m — oo in such a way that b/\/m — by, and p/m —

t*. Then as m — oo,

Pr,{M; > b} ~ [1 - &(v))]
20(2n) v3(2n) ]

§{t~(1 — t)D(t,t)}F  mb(bo + 6{t=(1 — t=)D(t*,t)}})
(2.27)

+ m'%é('r)[

where
y = m}[bg — 8{t"(1 - ") D(1" ,1*)} 7]
and D and 7 are given in Lemma 2.4.2.

Proof : Note that

PrOTo < p) = PrOrs < o} + Prif(ms < o} = PrO(nd < p} PQ{my < p).

o —p/m)}
Using Lemma 2.4.2 and the fact that the major contribution to fbi‘{’““ "/'/")})ﬁ Prgp){To <
=0oiptl—p/m

p} Pr{Us(p) € df} comes from the probability of crossing ttc upper boundary by the
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e
e
process U} (i) conditioned on Uy, (p) = £ which is close to the upper boundary, we get d
..
botr-pfmpt . :
/ , Pri{To < p} Pr{U3(0) € df)
=4{o(1-p/m)} }‘-*
b{o(1-p/m)}} %
~ expl~2n{b{p(1 - p/m)}} ~ EHD(t", )] Pr{Us(p) € de) B
)
Using a similar approximation for the other conditional probability on the right-hand side :::'
NE
of (2.27), and evaluating the integral in (2.22) asymptotically as m — oo, we obtain (2.25). "‘:’
N
' N
)
Ny
Remark 2.4. When z, = f(j/m) for some integrable function f such that f(0) =0 "
and f(1) = 1, we get the same result but with D(¢*,t*) defined in Lemma 2.2.6. ey
A%
Table 6 shows the approximated powers of the statistic (2.1) when the z,’s are uni- ’
formly spaced. For each case of a sample size m=20 and m=40, one sided significance N ';
)
level 0.025 and 0.5 are considered. A Monte Carlo experiment was performed and shows .4:

that the approximation given in Theorem 2.4.3 is accurate enough. The forth column of

Table 6 involves the LRS with different choices of § and p. And the sixth column involves oS
*‘-
the MLRS. Roughly speaking. the unmodified LRS and the modified LRS perform about j::
A':.»
the same, but it can be seen that the modified LRS with mg > 1 and m; < m — 1 has : 5
power which improves over the unmodified LRS at points except those close to 0 or m. ;
Y
n
To find a confidence region for p, the method of Cox and Spijgtvoll (1982), discussed N
t
in Worsely (1986) can be used. Let the confidence region D, contain all change-points &
hayts.
that partition the sequence into two subsequences in which we accept the hypothesis of ®
r
no further change-points at level a. Consider the tests for a further change-point in two- ::'3
W
subsequences; ‘:}"
A
N
H;, : a=...=al” against e
+ t{
I, 31<k<p suchthat aVl=...=a® g o+ = ... = al? ':i
Py
and )
[ )
H}, @ ot = ... = o™ against ®
A
o
A
rot
’
o~
o~
23
]
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»
N
HY :3p+1<k<m suchthat al?*) =...=a®) £qlk+1) = ... < olm), -
F' 4
If both of Hy, and H{{D are accepted at the combined level a, then we put p in D,. ':f
{
Let M, be the equivalent of the test statistic M; evaluated only for the subsequence N
N
of observations (zy,4),...,(%,,y,) and let pr be the equivalent of the test statistic %
M, evaluated only for the subsequence of observations (z,41,¥541)---,(Zm,¥Ym) Define ;
r
Pr{M[, < b} = G;(b) and Pr{M}, < b} = G}(b). Then §*
v
Pr{M[, < b and M}, < b} = Pr{M[, < b,} Pr{M;, < b3} .1‘
= G; (6:)G} () i
and so an exact (1 — a) confidence region for p is
4
4
D, ={p:G,(M],)GI(M},) <1-a}. N
.l
)
Asymptotically as m — oc, and p — oc, G;(-) and G}(-) has the same formula and can ‘::E:
be obtained from (2.16). o’l::
g
In the rest of the section, mathematical results about the confidence set of the change ®
point are stated and the related problems will be discussed. Suppose that we observe fi
Y1,-..,Ym and z, = j/mfor j = 1,...,m, that the hypotheses of exactly one change only ‘ 3
in the intercept of the regression line is true. and that a@;, @;. and 8 are unknown nuisance N
parameters. Then the likelihood based cc:r.dence set for a change point can be defined §
1 ]
as follows. .::":
L
For1 < mg < m; < m and ¢ > 0, define o
»
A(p.c) = {_max [Um(i/m)]® = [Un(p/m)] < c}, ey
MQSISYTI] LS
where Uy, is the process defined in Section 2.1. \:_
Although the unconditional probability of A(p,c) depends on both p and (a; — 1), "'.-
inference can be made free of (a; — ;) if we condition on the sufficient statistic U (p) = :'
i
Un(p/m){p(1 - p/m)}% = £. Thus in principle ¢ = ¢(a, p,£) can be determined by Q.r
S
.. [
Pr{A(p,c)|U(p) = £} = (1 - a), (2.28) o
o
™,
g
Y
0
\;
l\ >
S
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where a is a significance level of the test. Then the set of all p such that the sample path
{Um(j/m),j = mg,...,m;} belongs to Afp,c(a,p,.Us(p))] is a (1 = a)100% confidence set
for p. Then

o =Pr{ max |Un(i/m)|2b|Us(0)=¢},
where b= {[c(a,p,£)]* + €}
= Pr'o{Ty < m1)

= Prif{To < p} + PrO{T1 > p} - Pr{To < p and Ty > p}, (2.29)

where Tp and 7 are defined in (2.22). Since the third conditional probability in (2.29)
is negligible comparing to the first and the second probabilities which are usually small,
in order to get a confidence set it suffices to find an approximation to Pr(:){To < p}.
This conditional probability depends on how big the difference between the conditioned
value, £, and the boundar_ value at the change point, £b8{p(1 - p/m)}%. In this section,

we consider the confidence set when
A = b{p(1 - p/m)}} - € = O(m).

Then
P = Prif{Ty < p)

-1
Z Pr(:){To = n}

n=mgp

-1 oc
> / Pr{| Us (k)| < b{k(1 - k/m)}3 for all mo < k < n|[UE(n)| = g}
0

n=mo
x PrEI LA (n)| € b{n(1 - n/m)}} 4 dz},
where U:n"(:)(k) is the process Uy, (k) conditioned on Uy, (p) = £, and y = b{n( 1-n/m)}? +
z.

Lemma 2.4.4.

Given that L';"(;)(n) =y, asm — oxx,nfm — s, p/m — t,§ = mf. and for a fixed

k, [L";&")(n - k) - pép)(n - k| n)]{D(s,s)}‘z1 is distributed approximately as sum of
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i.1.d. random variables each of which has mean 0 and variance 1. where

u(kln) = k[C1(k, n, )0 + Calk,m, p)y/ 7],

0 o) = (1 = n/m)[r(k,p) - r(k,n)r(n,p))
Colkine2) = ) = r2(n, p)3 = p/m)n/plo]m’

(1= n/m)r(k,n) = r(k,p)r(n, p)(1= p/m)n/p
Catksm.P) = =" fm) = ¥3(m, o1 = pfm)nfp]

r(n,p) = D(n/m,p/m)/{D(n/m,n/m)D(p/m,p/m)}}

D(n/m,p/m)=1-3(1 - n/m)(p/m) for n < p.

Proof. Since L’;f:)(n) is distributed as N (u(n|p), 0% n|p)), where

p(n|p) = Erm(n, p)n/p,
o?(nlp) = n(1 = n/m) - {rm(n,p)}*(1 - p/m)n?/p.

it can be shown that

#29)(k‘n) - [U‘ (P)(k)IU‘ (P)(n = y]

= k[Cy(k,n, p)Eo + Ca(k,n,p)y/n],
(o (kin)]? = Var (U 0(8) [ Un2m) = ]

= k[C(kvp) - {Cl(kvnap)} C(n,p)k/n],

where -
((k.p) =1~ (k/m)~rZ(k,p)(1- p/m)k/p.

Then direct calculation implies that as m — oo,
[0 (n = k| n)]* = k/D(s, 9),
and
Cov[Un ¥ (n - k1), U (n - k2) | U, ©)(n) = y] — min(ky, k2)/D(s, ).

Hence the proof is completed. §

T A A ﬂ-* *'j.,‘.‘ \‘.I-.\(\J, _.\
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Lemma 2.4.5.

Suppose that b — oc,m — oo, in such a way that n/m — s, p/m — t, and b//m —
bo. Then
Py(n,z) = Pr{U.P)(k) < b{k(1 = k/m)}} for all mo < k < n|UZ¥)(n) = y)
> Pr {Sk > 2{D(s,s)}3, forall k > 1},
where Si is the sum of k i.i.d. random variables with mean u and variance 1, and
u = By ~ Bo,
By = bo{D(s, )} /[2{s(1 - 8)}}],
By = 3(1 = 8)(s/t = 1)n/[m((n, p)D(s, s{ D(t, ) H],

D(t,t2) =1 - 3tz2(1 - 11) for t; < t;.
Proof. Note that
Py(n.z) = Pr{U, (k) — P (kIn) < By(n,k), for all mo < k < n|UL¥)(n) =y},

where _
By(n,k) = b{k(1 = k/m)}¥ — 4 (KIn).
Since the joint distribution of {{U ¢ (n — k) = u{(n = k|n)|{D(n/m,n/m)}3 k =
1,...,n — mg} given that U;"(:)(n) = y converges to the unconditional joint distribution
of {Sk.k =1,...,n=mo} and By(n,n—k){D(n/m,n/m)}} ~ k[B; - Ba&o) — 2{D(s, s)}3,
Py(n,z) 2 Pro{Si < k[By — Byko] — 2{D(s,)}}, for all k > 1}
= Pr_,{Sk < —z{D(s,8)}3, for all k > 1}
= Pr,{Sk > 2{D(s,s)}3, for all k > 1}
= {E[S, )} Pru{Ss, 2 2{D(s,8)}}}n,

where 7, = inf{k : k¥ > 1, Si > 0} and the last equality holds by the argument in
Siegmund (1986, Chapter XIII). 1§
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Section 2.4: Powers and Confidence Regions 39

Theorem 2.4.8.

Assume that b{p, -p/m)}% -§=0(m)and b — o0, n — oc, p — o0, and m — oc,

in such a way that b/\/m — by, n/m — s, andp/m — t. Then

Pro{T < p}

=« 5 | exol-dinprzfotn, o) PruiSe, 2 2(D(s, )}z R(n, ),

n=mo

where
R(n.p) = #(d(n,p))u{E.[S. )]},

d(n,p) = [b{n(1 = n/m)}} - u(nlp))/o(nlp).
Proof. Note that
Pro{T, < p)
= Pr(:){"o+ <p}+ Pr(:){ro‘ < p} - Pr(("){ro+ <pand 7; < p}.
Since for £ > 0,

Pr(:){To <p}= Pr("){ro* < p}

Z I:'r("){'r0 =

n=mg

R

5 / Py(n, z)Pr(”){U,'n(n) € b{n(1 - n/m)}} + dz},

and similarly

pr'? To<p} ™ Pr? {70 <n},
by Lemmas 2.4.4. and 2.4.5 and letting m — oo,
Pr("){To < p}

/ {Pr .{S-, > z{D(s, s)} Y/ E.[S-.)}dz{#(d(n,p)+ z)/a(n|p)}

n=mg

/ Pr, {S-, 2 z{D(s,s)}} exp{—d(n,p)z/o(n|p)ldzR(n.p),

n-mo

where d{n, p) and R(n,p) are defined above. §
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Remark 2.5. If d(n',p)/[a(n‘lp){D(n'/m,n‘/m)}%] = 2u for some n* at which the
integration has the biggest contribution to Pr(:){To < p}, then Pr(:){To < p} can be
reduced to Y Pr(:){To = n}, where the summation is over n which are close to »n*, and to

a further simpler form by the argument in Siegmund (1986,Chapter IX).
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[ 3
Change in Both Intercept and Slope -
»
NGy
N
Pt
3.1. Models and Test Statistics _
Byt
R
In Chapter 3, the two-phase linear regression model in which both intercept and :é::
i
slope terms change will be considered. Quandt (1958) introduced this model. He pro- 'j
posed the LRT to test for this type of two-phase regression model as opposed to the null ..
*-..
hypothesis of the simple linear regression and observed that the LRS doesn’t follow the 'f"'
1
standard maximum likelihood asymptotic theory. This type of two-phase regression model \ !
has many applications in econometrics, biology, quality control, and so on. Brown, Durbin ®
and Evans (1975) give three examples involving growth in the number of local telephone N
. LD
calls, the demand for money, and staff requirements of an organization. They use recursive :':"
residuals to study the stability over time of regression relationships and discuss Quandt’s ~N
likelihood method. Hinkely (1971) studies a small set of data obtained from replicated .:_
Iy
experimental determination of the relationship between blood factor VII production and ::'_
N
wafarin concentration. He applies a broken line regression model with a continuity con- :';'
'.\ il
straint to this set of data. The same kind of example appears in Haddad, Jeng, and Lai o
(1987) who use a two-phase regression model to summarize the time course and change in ::::
e
heart rate during respiratory pauses in puppies and young adult dogs. '!:.,-
N4
We consider the problem of testing the null hypothesis that the data follow one simple ®
. . QN
linear regression : AR\
3
Ho : y, = a+ Bz; +¢j, j=1,...,m, against ::.
A
o
the alternative hypothesis that there is a change both in the intercept and slope : e
o
4
e
-
s Ln fa O ‘.';','
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Section 3.1: Models and Test Statistics 42

Hy : 31<p<m such that
y; = a1+ bz, + ¢, j=1....,p
yj=a2+ﬂij+qu j=p+lv--'vm;

where a; # az and 3, # 3.

Unlike Hinkely’s model, we do not assume mathematical continuity of the two-phase
regression line and we suppose that a change happens at the pt* data point as in Chapter 2.
In this section, we assume that the ¢,’s are independently, identically normally distributed
with mean 0 and variance 02 and we derive the LRS for cases of known and unknown o2
and study the null and alternative distributions of the LRS. When o2 is known, o2 can be
assumed to be equal to 1 without loss of generality. Then -2log(likelihood ratio) statistic

for a fixed change point i is proportional to

[ym - gi]gmi/(m - i) + [Q:y,i/er.i + Q;yz.i/Q;:z.i] - [Q;yz,m/sz.m]s (3-1)

where
2= ()2l 2 =() z)/(m=i),
1=1 J=t41
%= ()i, i =0 %)/(m=i),
J=1 J=1+1
Qzri = Z (z; - fi)z’ ;:z.c' = E (zj - f:)zw
1=1 J=i41

Qeyi =D (2, = 2)(¥; - §)s  Qiyi= 3 (2= Z)w; ~ %)
=1

=141
To get some insight about the distribution of (3.1), we can rewrite (3.1) as

| Vmli/m) |I? = 8/T7%6;,

-----------------
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1 where

b= (& — a7, 3 - 87,

& = § - Bizi, & = g7 - Bz},
Bi = Q.ty.i/Q::,h Bn- = Q;y,i/Q;z.i’

(m/[i(m — )]+ (22 Quei) + (£7%/Q%;) Zi/Qrzi + f:/Q;z.i)
ii/Q::.i + f:/Q;z,i I/Q.tz." + l/Q;,_,' .

Hence the likelihood ratio test (LRT) of Ho against H, can be based on

@2 || V(i/m) || .

As in Chapter 2, we shall consider the modified LRS

Mz = max || Va(i/m) |, (3.2)

mo<i<m,

where 1 < mg < m; < m. Based on the MLRS, Hp is rejected for a large value of M3 and
the value of i which maximizes || Vm(i/m) || is the maximum likelihood estimate of the
true change point. Under Ho, &, has a bivariate normal distribution with mean (0,0) and
covariance matrix ¥, for each 7 and so the null distribution of M3 is the maximum of a

sequence of correlated chi-square random variables.

Here is another expression of the LRS which will be used in Sections 3.2 and 3.3 :
| Vin(i/m) |12 = Vi m(i/m)] + [Vam(i/m)P, (3.3)

where
roq royvil iy gil vyl yiy~! H
Vim(i/m) = [A1(X] X}) X Y]/[ (X1 X)) Al] ’
i'viyv-lyi IRRTIPIC B
Vam(i/m) = [A5(X3 X3) T X3Y]/[A5(X5X5) Ad]”,

Al] = (1.-1.0), A'2=(0’1w0»’1)‘
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(1 0 z; ) (1 2, 0 0 )
1 0 =z . 1 z, © 0
Xy = ,  X3= ,
01 Tig1 0 0 1 ZTigy1
0 1 zp ) 0 0 1 zn )
Y =(y1,.--2Ym)-

From this representation, one sees that Vi ,(i/m) is the same statistic as Un(i/m)
defined in Section 2.1. That is, V; m(i/m)is the LRS to test that only the intercept changes
as opposed to the null hypothesis of no change. On the other hand V; n(i/m) is the LRS
to test the null hypothesis that only the intercept term in the regression line changes at
the point ¢ against the alternative hypothesis that both intercept and slope change after
the same point i. It is easy to show that each of [Vl‘,,.(t'/m)]2 and [Va,m(i/m)]? has a chi-
square distribution with 1 degree of freedom and the covariance function of the process
{Vim(i/m), i = 1,...,m} was given in Section 2.1. For the process V2.m the covariance

between V3 m(i/m) and Vo m(j/m) for i < j is given by

- (3.4)

. L {QeiQu} Dp(ifm, j/m)
Cov [ V2.m(’/m)»V2.m(J/m)] = { } {Dm(i/m, i/m)D,,Jj/m,j/m)}’

Q;z,gerJ

where
Dm(z/va/m) =1- (fm - ii)(fm - i;)mJ/[(m - ])Qtt] fOT 1 < ]

It is convenient to introduce the notations
Ar = Cov [Vim(i/m), Vim(i/m)], A1z = Cov [Vim(i/m), Vom(j/m)]
A1 = Cov [Vlvm(j/m),Vg,m(i/m)], A2 = Cov [Vg_m(i/m),Vg‘,,,(j/m)].

One delicate matter is the cross covariance between the two processes Vim and Vo ;. It can

be easily checked that V; ,(i/m) and Va,m(i/m) are independent at each point . However

for different points i and j such that i < j covariance function is as follows:
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o

?.r'.. F

iQ 1 '.
miQ;, : (z: - 7,) A
A2 = { : s } : 1 (3.5)

12 (m - 1)Q::.mQ:z,j {Dm(i/m,i/m)Dm(j/m».7./m)}5 :

: 3 (27 - %)) R
Az = {m.(m — ]"-?IN } D . o) y
JQZ‘I.MQ:I,:' {Dm(z/m, l/m)Dm(]/msJ/m)}% ;
In summary, :'
I, A Z
Cov [ Vn(i/m), Vimli/m) ] = ( o ) : 23

where |

e
N

I = , A= .

Thus {Vn(i/m),i = 1,...,m} is the two dimensional stochastic process with zero

g

drift and the covariance function given above. Again the null distribution of M3 depends

-

on the z;’s only through this covariance structure of {V(i/m)}, not on a, 3. Under the :a:“i
alternative, V,(i/m) has a bivariate normal distribution and the covariance structure 2.

-
remains the same as under the null hypothesis. So the only difference of the LRS under o)
H, is non-zero drift of {V,,(i/m)}. For convenience we use the notation l;*:
K
Q, = a3 —ay, Ag = By~ B e
]

N

Then under Hj, V} m(i/m) has non-zero mean for all ¢, which is :.
N
E[Vim(i/m)] ) _

— avoe ~

=i [(l - p/m)Ai.p{Aa + AB:E;} - Aﬁ(zi b z)sz‘,p] i< p Q
(i1 = i/m)Dim(i/m, i/m)@zzm}? 3

e

1 A Z,} —Ap(Z] -2 T . hy

= (m-i) [(p/m)A Qs + Api,) 8(Z; 'T)fr .p] Ci>op, :

{i(l = i/m)Dm(i/m,i/m)Q,,'m} .":

o

where :-:'{
-;'\

Ai.p = -er.mDm(i/mv p/m)
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4

And for V3 m(i/m),
v . !
:" E{V2m(i/m)]
o
::-' _ {Qz:.i }% [(m p)('t -z ){A + Aﬂzp} ApQ:, p] i<p A
¥ - - -_— g
" zza {Dm(i/m,ifm) }2
g _ {Q;,..-} [o(2: = 2:){8a + 8920} = 85Quey] P50
':i‘ Qe {Dum(ifm,i/m)}¥ ;
1 y
M
c',g So the alternative distribution of M3 depends on unknown parameters ag - a1, 52 - 5
. and the unknown change point p.
4
" 5
L If 0% is unknown, the LRS is proportional to !
o
', V
k 22X N Ven(ifm) /&
? where 62 = (Quym — Q% m/Qzzm)/m. Thus the modified LRS is ]
) ‘8
R ' . )
: My = max [ Vm(i/m)|l/ 3. J
i‘

In the following sections, similar kinds of results as in Chapter 2 will be discussed.

We study the asymptotic behavior of the MLRS under Hy for the cases of known and N

unknown variance. In Section 3.3, we derive an approximation to the significance level

of M3 and present simulation results which support the analytical approximation derived

g o
oy

for known variance case, and show that this approximation can be applied for unknown

]

variance case.

p

: 3.2. Asymptotic Behavior of Test Statistics 1
N :
',i In Chapter 2, it was seen that the MLRS converges to the maximum absolute value R
¥ of functions of Brownian bridge processes or Gaussian processes according to the random

V: or fixed z,’s, respectively. In the case where both intercept and slope change, we shall

e obtain similar results which are extensions of those of Section 2.2. As we can guess from :
1 the form of the MLRS, the limiting distribution is the maximum norm of random functions ‘
::: involving two-dimensional Brownian bridges or two-dimensional Gaussian processes.

v
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Section 3.2: Asymptotic Behavior of Test Statistics 47

Section 3.2.1 concerns the case in which the independent variable is random. Also, the
asymptotic behavior of the MLRS is considered conditionally on the z,’s. As in Chapter
2 we obtain the same limiting distributions whether we consider the null distribution of
the MLRS conditionally or unconditionally. We will deal with the case of the fixed values
of the independent variable in Section 3.2.3. The limiting behavior of the MLRS under
a mild assumption about the values of the independent variable will be studied, starting
from the case where the values of the independent variable are uniformly spaced. Although
the MLRS was derived assuming that the ¢,’s are identically and normally distributed, the
asvmptotic results to be discussed in Sections 3.2.1 and 3.2.2 do not require this normality

umption.
3.2.1. When the independent variable is random

This section will show similar results as in Section 2.2.1 using Donsker’s theorem when
the independent variable is also random. \s in Section 2.2.1, it can be easily checked
that the MLRS does not depend on the slope under the null hypothesis. This implies that
we can take z as the random variable .which is independent of y when we study the null
distribution of the MLRS. The following theorem is on the convergence in distribution of
the MLRS when 02 and o2 are known. In this case we may assume 02 = 02 = 1 without

loss of generality.

Theorem 3.2.1.
Let (z1,%1):-.-,(Tm,Ym) be i.i.d. random variables such that E{z,] = E{y;] =
E[z,2) = E[y;?] = 1. and E[z,y1] = 0.
Under Hy, as m — oc and m;/m — t; fori=0,1,

0(; o
M3 = max I Vo (i/mm) | — max _H_W_t_)_l_l_ in distribution.

mo<i<my {(i/m)(l—i/m)};- toSt<n fy() t)}’

where VO,(i/m) = Va(i/m){(i/m)(1 - i/m)}}, WO(t)' = (WP(1), WP(1)). WP and

WY are two independent Brownian bridge processes.
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Proof : Note that

IVEG/mF = [V2n(i/m)] + V(i m),

where
V2,.(i/m) = [By(i/m) = Bz(i/m)(Qusym/Qzz.m)}/ { Dmli/m,i/m)}?,
VOn(i/m) = {1/Quei + 1/Q%e i} {Quyi/ Quri = Qoy o/ Qi)
Dp(i/m,ifm) =1~ [B:(i/m)[[(i/m)(1 - i/m)Qzz.m],
B:(i/m) = (2 - Zm)i/Vm,  By(i/m) = (% = §m)i/V/m.
(i) Let

Yom(i/m) = By(i/m)/{Dm(i/m.i/m)}},

Xm(i/m) = Bo(i/m)(Qeyom/Qse.m) { Dmli/m, i/ m)}1,
so that Vlo'm(i/m) = Ym(i/m) — Xm(i/m). In Theorem 2.2.2, we have shown that

Ym — WY in distribution and X, — 0 in probability,

which leads to

Ve, — WP in distribution.
ii) Note that V2 _(i/m) can be rewritten as
2.m

X

{ (Qezs/)Q%, 5/ (m — 1)) }%
(Qzzm/m) = [Z:(3/m)]2/(i(1 — i/m))

- %sz.i/‘/; — {i/m %Q;w-/\/m—i
({l m) Qzzi/i ti/m} Q;z,i/(m-i)).

Since VP, (i/m) is a function of the partial sum, Z;zl z;y;, Donsker’s Theorem can

be used to show that V'Y — WY in distribution in the following way. Let Wy, (i/m)

Qzy.i/v/m. First we use the convergence of Wy, to the Brownian motion W; to

show that for any sets of (ry,...,74) and (41,...,1,) such that (t;/m,... i,/m) —

(t1,...,tp) as m — 00,

Elexp{i Y neVPn(ix/m)}] = Elexp{i D (ci,Q-vii + €}, Q2y)}]
k=1

k=1
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A
n Ly
E[exp{iz reW2(te) )] in distribution, ’
b
. . e "
where ¢, and ¢;, are appropriate coefficients. This implies that the finite dimensional :::
. )
distributions of V| converge to those of WJ. Secondly, the tightness of the sequence ::'.
XN
{V2,.} follows from the same sort of argument involved in the proof of Donsker’s
N
theorem (Billingsley,1968). Hence 2
>
‘rO 1}0 in di . . :. .
2.m — W3 in distribution. e
[v.1
]
(iii) Since VP and Y., are independent and X,, — 0 in probability, it is easy to show "
that (Xm, ¥, VE,.) — (0.WO, W2)  in distribution. )
b
Then by the continuous mapping theorem the proof is completed. g 2
'
As pointed out in Section 2.2, we obtain the same limiting distribution as in the '_;
preceding theorem when the variances are unknown. ::';
2
Corollary 3.2.2. 4
A3
~
Under the same assumptions as in Theorem 3.2.1, iy
ol
VO (i WO(t . .
M, = max [ Vim(i/m) | - — max —”——(—% in distribution. N
moSISM {(ifm)(1-ifm)}?  PSISH {y(1-1)}?
1 5
where VO (i/m) = VO (i/m){(i/m)(1 - i/m)}=. g
B
In the following theorem, the asymptotic behavior of the MLRS will be considered .
conditionally on the z,’s when the z,’s are a random sample from some distribution. o
Theorem 3.2.3. »
2
Let z; = (z;,y;), j = 1....,m be a sequence of i.i.d. random vectors such that {;.
, o oz ]
E[z;] = p and E[z;2;]=S = . | N
ozy O, ’
Under Hg, as m -- oc and m;/m — t; for i = 0,1, conditionally given z,.z3,..., ::'\
0, WO t D
Ms; = max [V (i/m)l — max —”—(—)”—_ in distribution. y
mo<i<my {(z/m 1—1/m)}2 <ty {t(l —t)}’ ™
3
'
"
A
“‘
N
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Section 3.2: Asymptotic Behavior of Test Statistics 50

for a.e. zj,z3,---, where WO(t)' = (WP(1),Wg(t)) and W? and WY are two inde-
pendent Brownian bridges.
Proof : To prove this, we follow the same argument as in the proof of Theorem 3.2.1. In
the proof of Theorem?2.2.4, we wrote V,‘fm = Zm — R, where Z,, and R,,, were defined in
Theorem 2.2.4, and showed that a.e. in z
(1) Zm — W’f’ in distribution,

(1) max Rn(i/m)—>0 in probability.

mo<i<my

Then similar arguments show that, a.e. in z, as m — o0,
V. — W3 in distribution,
and hence

(Zm, max Rp(i/m),V2.)— (W?2,0,W?) in distribution.

mo<i<m, '
Therefore by the continuous mapping theorem, the proof is completed. The independence

between WP and WY can be proved examining the limiting behavior of the covariance

functions given in (3.5) and (3.6). B

Corollary 3.2.4.

Under the same assumptions as in Theorem 3.2.3, conditionally given z,.z,,...

70 (; 0
M, = max I Vm(i/m) | — max —”—VV—(-M— in distribution,

moSiSm {(i/m)(1 - i/m)}}  0StSh (10 - g}

for a.e. zq,23...., where VO (i/m) = VO (i/m){(i/m)(1 - i/m)}!.

In the above Theorem 3.3.3, W0 and WY are independent since Z; — Z, — 0 and
z; - 2] — 0asi,j— oc. Thus the MLRS may not converge to the limiting distribution
given above if the empirical distribution of the z;’s does not satisfy these conditions. We
will discuss this more carefully in the following section describing how covariance structure

depends on the spacings of the z;’s.
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Section 3.2: Asymptotic Behavior of Test Statistics 81

3.2.2. When the independent variable is fixed

This section will show that the MLRS, M3 and M, converge to the maximum norm
of two-dimensional Gaussian processes when the z,’s are fixed. In the preceding section,
it was seen that V; and V; are asymptotically independent conditionally on the z,’s when
the first and second sample moments of the z,’s converge. The covariance function which
was given in (3.4)-(3.6) explains the effect of the spacing of the z;'s on the distribution of
the MLRS. In the following theorem that gives the limiting distribution of the MLRS, we

use the representation of (VP (i/m), V2, (i/m))as

m m
(}: ai.kfsz bikek),
k=1 k=1

where a, x was given in (2.6) and

(i/m)(1 = i/m)QeriQui ) 24 = 5, .

bi'k = { Dm(i/myi/m)Qz:.m } Q::.i ’ k st
_ {(i/m)(l - i/m)Q,,..-Q;,,,,-}%z,, A

B Dm(i/msi/m)er,m ;,',' ' '

Here we assume that o? is known and hence without loss of generality equals one and

begin with the case in which the z;’s are uniformly spaced.
Theorem 3.2.5.
Suppose that r; = j/mfor j=1,...,m.

Under Hg, as m — oc and m;/m — t; fori=0,1,

_ ) _ . distributi -
M motx(_niasxm | Vim(i/m) || ‘org?xgl I V() |l in distribution, (3.7)

where V is a two-dimensional Gaussian process with mean 0 and a covariance matrix,

Cov [V (1), V(s)] (12 A
" t, = ]
v viol= 12)

I3 is an identity matrix and

A (/\”(t,S) A12‘(173))
a Az(t.s) Az(t,s)
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NG
with '.:.,
b }
e (§3)
s(1-1) {D(t t)D(s, )} 2
3(1 — )3 a

A2a(t,s) = {t3(1 2) } D(e.1) I
$(1-1)° {D(t,1)D(s,s)} )
(1 - s)° t—s 2%
Aty s) {3 } ~
12 33(1 -t) {D(t,t)D(s,s)}% :
301 _ - [
Aanlt.s) = {3t (1 s)} s~ i Xy
(1-1)° {D(t,t)D(s,s)}? S

and

D(s,t)=1-3s(1-~1) for t < s.

Rad WY 2 4

-
, 7

Proof : In proving this result, we have only to show that

V,—-V in distribution.

{‘l’ {,Jt. ﬂ‘,‘:‘}’r‘.&

To prove that the finite-dimensional distributions of V,,, converge to those of V, it suffices

to show that for any sets of (ry,...,7,) and (iy,....1,) such that (iy/m,...,i,/m) — N !
wi
(t1,...,tn) as m — oc, "'
®
n “’
Efexp{i ) _(r14Vim(ix/m) + r24Vam(ic/m))} o)
k=1 :-’
&
n Rt
- E[exp{iZ(rl'kVI(tl) +r24Va(tx))}]  in distribution, b
k=1
o
which follows from the same argument in Theorem 2.2.6. In Theorem 2.2.6, we have shown J '
’
that the sequence {V} .} is tight and the similar argument shows that the sequence {V;,,} “ .:
<
is also tight. Lemma 2.2.5 now implies that the sequence {V,, = (V) ;m, Vam)} is tight. :"

And hence V,,, — V in distribution. Therefore (3.7) follows from the continuous mapping

theorem.

The rest of this section is devoted to a generalization of Theorem 3.2.5 to the case

where z;, = f(j/m) for some integrable function f. In fact. we need only to figure out
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Section 3.2: Asvmptotic Behavior of Test Statistics 83 t :
2
e
the limiting covariance function to find the limiting distribution of the MLRS, which is r
described in the following theorem. The proof will be omitted since it is similar as that ::‘.Jl
"\
of Theorem 3.2.5. 1:
AN
Theorem 3.2.6.
‘i
A
Suppose that z; = f(j/m) j = 1,...,m, for some integrable function f such that ',-:,}
g
f(0)=0and f(1) = 1. i
fi,
» i
Under Hg, as m — o and m;/m — t;, fori=0,1,
0
O]
_ _ e o
My = monsl‘;g(m | Vi(i/m) || mta.xq V() |l in distribution. ::::..

where V is a two-dimensional Gaussian process with mean 0 and covariance matrix

12 Ata
Cov [V(1), V(s)] = (,\ ) ,

ts 12

‘-.’ v

@S E
REANS

with

5

oo,
-

Fen'd

t(1 - ) }1 D(s.1)
{Dtt, t)D(s s)}%

h(t)[D(s, )~ h(s)]} D(s.t)
h(s)[D(t,1) ~ h(2)] {D(t,t)D(s,s)}%

1=
2= {5

Ap(t.8) = {t[D(s s) = h(s)] }%(1 = 8)g(s) ~ (1 — t)g(t)
£

".
" ‘, (l

AT

. ]
""’5?'?"

h(s)(1 - t) {D(t,t)D(s,S)}%

h(1)(1 = s) }% sg(s) — tg(t)
[D(t.t) ~ h(t)]

Y 4}
2P

A(t,8) =
ol (D(1,t)D(s,5)}}

Voarx

-
N

and

@,

_ Jo flw)du = (Jg f(u)du)/1
(1 = O FP(u)du = () f(u)duy]}?

JE Pruydu - (f2 f(u)du)’/t

Pl o o SO oW
A Ay Ry 2 X,
R,

h(t) =

’~
>

(o fA(wdu = (f5 f(w)du)]
D(s,t) =1~ s(1-1t)g(s)g(t) fort < s.
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Remark 3.1. In Chapter 2, it was discussed that covariance function depends on the

z::: configuration of the values of the independent variable only through the function g. In the

;EE case where both the intercept and the slope change, one more function A is involved to

u explain such a dependence. Also g(t) = V3 and h(t) = t3> when f(u) = u, which is the

;‘::: case in which z; = j/m.

3:::: When the variance is unknown, we obtain the same limiting distribution of M as

i that of M;, which is stated in the following corollary.

Corollary 3.2.7.

.’)‘ Suppose that z; = f(j/m) j = 1,...,m, for some integrable function f such that

i £(0) = 0 and f(1) = 1.

i Under Hg, as m — o0 and m;/m — t; fori=0,1,

j:( M, = mnsxiasx“nl | Vim(i/m) || — ‘oxgtakxmt1 RZ0Y in distribution,
n where V is a two-dimensional Gaussian process defined in Theorem 3.2.6.

o '
2 3.3. Approximations to Significance Levels

k)

Now our concern is how to approximate significance levels of M3 and M. We follow

J the basically same arguments used in Section 2.3, extended to boundary crossing problems

G by a discrete stochastic process which has two-dimensional state space and one-dimensional l
4 time parameter. In Section 3.3.1, we give an asymptotic expression which can be used

My to approximate Pr{M3 < b} when the z;’s are random, using the argument developed in

2 Siegmund (1986, Chapter 5). Then we derive an approximation to the right-hand tail of

; the distribution under Hy of M3 when the z;’s are fixed. Since these tail probabilities .
;.. are interpreted as significance levels, it is important that they be accurate when the true
.E.. probabilities are in the range .01 - .10. We perform Monte carlo experiments and discuss )
;E how accurately the asymptotic expressions approximate the actual distribution. Also it :
\ will be discussed how well significance levels of M4 which is the MLRS when o2 is unknown, .
Sg can be approximated by the asymptotic result derived for the known variance case. ;
::: )
W i
,
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Section 3.3: Approximations to Significance Levels 55 ’r"t
¢ lf
3.3.1. When the independent variable is random '..

In Section 3.2, we showed that

0
Ms — max | Wo(t) ||
fStSh (1 - t)}*

where WP is a two-dimensional Brownian bridge process on {0,1] and m,;/m — t,. for i =

“N
"

in distribution,

0,1, as m — oc. In principle, we can approximate the significance level of the test,

N

T - 8

Pr{M3 > b}, by the tail probability of this limiting distribution. James, James, and

Siegmund(1987) give an approximation to

C X h
PP

Pr{ max | W) I/{t(1 - 0} > b},

® 12z

where W0 is a d-dimensional Brownian bridge process. As in Section 2.3.1, the approx-

"
imations to tail probabilities of M3 by those of this limiting distribution are too crude. EE‘.
Since the exact distribution of M3 is too complicated, we shall now consider an analogous z‘?
discrete time result as in Section 2.3.1. In the following proposition, we derive an approx- :' ‘
imation to the tail probability defined in terms of a Brownian bridge process observed at ;'E
discrete instants of time, which is a generalization of (3.12) in Siegmund (1986). .::’.\:

Let T = inf{n : n > my,||S.|| > b{n(1 ~ n/m)}i}, where S, =2y + -+ 2z, and z’s l"-‘.
are independently normally distributed d-dimensional random variables with mean 0 and :
indentity covariance matrix. And let Pr([',n){A} = Pr{A|S, = 0}. :E"'

3

Proposition 3.3.1.
Assume that b — oc, mg — oo, m; — oo, m — oo in such a way that for some

O0<tpg<ty<landbd>0,

mi/m — t; fori=0,1, and b*/m — a.

Then as m — oo,

2 b(m"l-m")}
Pri™(T < m} ~ bde-%z(l—%)[r(d/z)]-‘/ ° rly(r + ajr)dr  (3.8)

b(m;’ -m-! )§
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Proof : (3.8) follows from the extension of the argument in the proof of Theorem 3.11 in

Siegmund (1986). 1

For d = 2 we obtain the desired result. Table 7 indicates the accuracy of this asymp-
totic expression to approximate significance levels of M3 and M, when the independent
variable is random. This asymptotic expression gives a crude idea about the significance

levels and improves the continuous approximation substantially.
3.3.2. When the independent variable is fixed

When the independent variable is fixed, the MLRS involves a two-dimensional Gaus-
sian process with covariance function given in (3.4). Since the Gaussian process involved
is again non-differentiable and non-stationary, we follow the same ideas as in Section 2.3.2
to derive an asymptotic expression for Pr{M3 > b}. However the situation is more compli-
cated than in Section 2.3.2, since we have to deal with two dimensional Gaussian process

whose coordinates have non zero covariance.

The following lemma reduces this boundary crossing problem by Gaussian process
which has one-dimensional time parameter and two-dimensional étate space to the problem
involving Gaussian process with one-dimensional time parameter and state space, so that
the derivation of an asymptotic expression follows from modifications of the calculations

in the one-dimensional case.
Lemma 3.3.2.

Let {V(t) = (Vy(1),V2(1))} be a two-dimensional stochastic process. Then

Pr{ max [IV(i/m)i2 b}

=Pr{ max sup [cos8Vi(i/m) + sin@Vy(i/m)] > b} (3.9)
mo<iSmy 9<h<2n

Proof : Note that
cos Vi (i/m) + sin 8V,(i/m) = ((cos 8,sin 8). (Vi(i/m), Vo(i/m)))

= [[V(i/m)|f cosw.
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where (-, -) is an inner product of two vectors and w is the angle between (cos 8, sin 8) and W

(Vi(i/m), Va(i/m)). Then taking the supremum over 0 < w < 27, (3.9) holds. @ :Q:"

We are now in a position to modify arguments used in Section 2.3.2. To begin,
we consider the case where z; = j/m. From Lemma 3.3.3 through Theorem 3.3.7, it
is assumed z; = j/m for j = 1....,m, Zn(i/m,8) = cos 8V (i/m) + sin 8V ;m(i/m). 0y
In Section 2.3.2, Cov[Un(t + h),Un(t)] = C(t)|h] + o(h), so that we took the distance NN

between points of the grid, h, as 1/m to make b?h x a. Note, however, that ")
Cov(Zm(t+ h,80+6),Zn(t,0)] — 1 = C1(t,0)|h] + Ca(t,0)6% + o(h) + o(6?). ey

Thus under the assumption that b2/m — a as m — oo and b — oo, we take h and § ®

such that b%h « a and b6 x a, so that A o« 6. Hence we use the normalized process &\.

Z}? (i,¢) = b(Zm(t + i/m,8 + ¢//m) - b), where b?/m — a.

Lemma 3.3.3. ®
Suppose that z; = j/mforj=1,...,m. ":
Let Z,(i/m,0) = cos 8V} m(i/m) + sin 8V, ,(i/m), and h
Z}0 (i,¢) = b(Zm(t +i/m.0 + c//m) — b), where b?/m = a.

Then as m — oc and b — oo,

td /. t.é8 _ . 2 1
E[Z, (i,c)-z [Z,,,(0,0) = 2] = ~u,(t,8)i —ac*/2+ o(1), A

} e 4 " \.j
vt 2t ®

Cov [ 282 (ir.¢1) = 7, Z88 (ia,2) — 2| Z5:8,(0,0) = =]

x

= 2u,(t, ) min(iy, i2) + c162a + o(1),

I{'ir‘l‘ "y ¢
P

where

PN AQ

' 8) = {[1 - 62(1 — )] sin? @ — v/3(2t — 1) cos@sinf + (1/2)}a
ualt,0) = t(1- )D(1,1)

D(t,t) =1 -31(1 - t).

. (3.10)

o w -
[ 4
LY

T

Proof : These results follow from straightforward calculations. 1§
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l:q
."
Lemma 3.3.4. 4
]
Fix n, h, and a. Then for each (¢,8) there is a constant H,(t,8,n,h) < oo such that, ."‘
‘|‘
if b — 0o, m — oo, and 6?>/m — a, then ‘::‘::
. o(b) :
Pr{ max sup Zm(t+i/m,8+ ¢/v/m)>b}/[Z=] = 1+ H,(t,0,n,h), I
0<1<n 0<e<h b B
<
where 2
N
0
H,(t,0,n,h) = / exp(—z) Pr{ max Y}*(i) + sup S,(c)> —z}dz,
-0 0<i<n 0<c<h n‘.*.
|||‘
and Y:'a(z’) is a partial sum of i.i.d. normal random variables with mean —u,(t,#8) ::‘
C."
and variance 2u,(t,6), :
Sa(¢) = ¢y/a$; - c%a/2 with §; ~ N(0,1) .
and {Y%(i)} and {S,(c)} are independent. E
Proof : By the previous lemma, the limiting process can be represented as N
()
YO(i) + Sa(c) = [oa(t, )W (i) = pa(t,0)i] + [cv/aS; — c2a/2], '.::;
W
\.':
0
where W is a standard Brownian motion and 02(¢,8) = 2u.(t,6). Then, following the "l§
Y
same argument as in Lemma 12.2.3 of Leadbetter, Lindgren, and Rootzen (1983), o
1
: #(b) "
Pr{max sup Zn(t+i/m,8+c/vm)>b}/[=—])— 1+ Ha(t,6,n,h),
0<i<n p<e<h b ';
where ¢ takes real values. § A
'-_,
Lemma 3.3.5. N
-~
For each (t,8), there exists a function H3(t,8) such that "
]
Lm H,(t,0,n,h)/(nh) = Hi(t,6) uniformly in t and 6.
Ao ,
As b — o0 and m — oo, %,
L
t 2T 3 .('
Pr{ max sup  Zn(i/m,c/v/m) > b}/ [b*é(b)) — / H:(t.6)d6dt/a?. »
to<i/m<t oge/\fmean to Jo Q_
l‘ .
>
M
]
\J
N
.~
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Proof : Let n and h be fixed integers and
By = ] >
kd {Im<|<(k+l)ﬂ lh<cs<u(?+l)h m(l/m,c/\/;ﬁ) - b}
= { max sup Zn((kn 4 i)/m,(lh + ¢)/v/m) > b}

0<1<n 0<e<

Then it can be shown that

Ky Ly
Pr{ max sup  Zm(i/m,c//m) > b} ~ P{B,},
{to<|/m<!1 0<c//m<2r } k=ZK° I'—'ZLQ { k'l}

where Kon = mo, Kyn=my, Lo =0, Ly =2ry/m/h, Ky — Ko = |m/n),and L, - Lo =
|27 v/m/h].

Now Lemma 3.3.4 implies that

Ky L, K, L
S Y P{Bud ~[e)/8] 3 D [1+ Halkn/m,h/y/m,n, b))
k=Ko i=Lg k=Ko l=Lo
K, Ly
~ o) [2r+ 3 S Hao(kn/m,lh/\/m,n,h)]/(nhaV/a).
k=Ko l=Lo
Therefore

. — X
Pr{ JIak,, U Zn(i/m,e/Vim) > BH/6(0)]

t 2r
~ lim / / H,(t,6,n,h)dédt/(nha/a)
to

no—o
00

/ " H:(t,6)d8dt/(av/a),

which completes the proof.
Lemma 3.3.6.
For each fixed (t,9).
ty 2w 2
/ H;(t, 0)d0dt/a2 —/ / ua(t,0)v[2uz(t,0)] dodt /a5 (3.11)
to

where u,(t,8) was defined in (3.10) and p3(t,60) = {pa(t,O)/2};’.

Proof : Note that

oc
H.(t.0,n,h) = / exp(z) Pr{ max Y (i) + sup Si(c) > z}dz.
0 0<ign 0<ce<h
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where Ya"o(i) and S;(c) have the same representation as in Lemma 3.3.4.

Let
Pr{ max Y}(i)+ sup S.(c) >z} =1- R(z).
0<i<n 0<c<h

Then

H,(t,0,n,h) = /oo exp(z)[l - R(z))dz
0

= /Omexp(:r)/roo dR(y)dz
= /:c /oyexp(z)dzdR(y)

= /0 exp(y)dR(y) - 1
- / exp(y)dF(y) / exp(y)g(y)dy - 1

= {/ exp(y)[1 - F(y)ldy + 1}{/ exp(y)g(y)dy} - 1,

where
1= F(y) = Pr{max ¥,*°(i) > y}

1 - G(y) = Pr{ sup S.(c) 2> y}.
0<c<h
By the same argument as in Lemma 2.3.4, as n — oo,

[ extwlt = Foidy/n — w00 i2u (1. 0).

And it can be shown that, as h — oo,

/0 ~ exp(v)g(y)dy/h — {a/(2m)}},

using
1/2, ify=0
9(y) = $ #(V2y)/V2y if 0 < y < h%a/2
8(y/(hv/a) + hy/a/2)/(hVa), ify> h%af2.
Then

H,(1.6.n,h)/(nha?) — p,(t,0)v(2u5(1, 8))/(aV2T).

asnh—o00. §
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Theorem 3.3.7.

Assume that b — oo, mg — oc, m; — 00, and m — oo in such a way that for some

0<tp<tij<landa>0

mi/fm—t;, 1=0,1and bz/m — a.

Then as m — o,

........

=<

2@ [

X -'i’
oy ..':J-E

.« =
1,
Pt W

;,e;:,

13 2 :;“.,'
Pr{_ max IVali/m)ll 2 8}~ 5%60) [ [ slous(e,O)lua(t. )dt/(aVE)

mg<i<m; to JO o
!
(3.12) ..:::.
where p,(t,8) is defined in (3.10) and u}(¢,8) is defined in (3.11). et
Table 8 indicates the accuracy of (3.12). From these numerical results, it can be ; N
confirmed that (3.12) is quite an accurate approximation to the significance level of M; ]
and also gives a reasonable approximation to the tail probability of the null distribution : |:z
of My. In the rest of this section, we generalize Theorem 3.3.7 to the values of the z;’s .ﬁ
4

which satisfv some mild conditions. Proofs will be omitted since they follow closely those %
2
of the previous theorem. XN
"

A
Lemma 3.3.8. sl
2

Suppose that z; = f(j/m), j = 1,...,m, for some integrable function f such that ®
f(0)=0and f(1)=1. n
o~ (3
&0
Let Zn(i/m,8) = cos8Vy m(i/m) + sin 8Vy m(i/m), and o,
1

L&

Z? (i,¢) = b(Zm(t +i/m,8 + ¢//m) - b), where §?/m = a. ®
o
Then as m — oc and b — oo, gk
0
E[Z{0 (i,¢) - 212,%.(0,0) = 1) = —pa(t,8)i — ac?/2 + o(1), i
A4t

Cov[Ze2 (i, 1) = 2, Z§5 (ia,e2) ~ 212:8(0,0) = 1] ®
el
= 2uq(t,8) min(iy, 12) + €1c2a + o(1), hot
LAF]
where ::::
utis

4

pa(t.8) = {1/[t(1 — 1)] + sin?(8) A, (1) — cos @sin 4;(t)}a/[2D(t))] (3.13) :

;$
“
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%
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R'()[D(1)]? + 2h(t)g(t)[h(t)g(t) — tD()E(t) - [A(t)?g(t)D(2)]
h(t)(D(t) - h(t))
D(1)
T -ty

Az(t) = 2(h(t)g(t) - tD(OE]/ {t(1 - HAE)D(2) - A(1)]}F,
D(t) = 1-g*(t)t(1 - 1),
E(t)=g(t)- (1 -1)g'().

Proof : A straight forward calculation suffices. §

Al(t) =

Theorem 3.3.9.
Suppose that z; = f(j/m), j = 1,...,m, for some integrable function f such that
f(0)=0and f(1)=1.
Assume that b — oo, mg — oo, m; — 0. and m — oo in such a way that for some

O0<tg<ti<landa>0

m;/m — ¢, ©=0,1and bz/m — a.

Then as m — oc,

Pr{, max [[Va(i/m)] 2 b} ~ to(b) / / 7 ozt 0)lia(t, 0)d6t /(a3
(3.14)
where pq(t,8) is defined in (3.13) and p2(¢,8) = {ua(1,6)/2}3.

In the case of z; = f(j/m), pa(t,6) involves two different functions & and g through
which the distribution of the test statistic depends on the configuration of the z;’s. Asa
matter of calculation, this case is more complicated than the case of the uniformly spaced
z;’s. However previous Monte Carlo experiments lead us to expect (3.14) to be quite
good approximations. In this chapter, we have not considered powers and confidence
regions. For a confidence region of the change point the method of Cox and Spijotvoll
(1981) can be used, and the argument in Section 2.4 might lead us to a generalization of

approximations to powers and confidence regions.
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Chapter 4

Concluding Remarks

As discussed in Chapter 1, the exact null distributions of most of the likelihood ratio
statistics are too complicated to deal with. Most of previous works have been done by
numerical or Monte Carlo methods, e.g. Quandt (1958), Beckman and Ccok (1979),
Maronna and Yohai (1978), etc. An analytic approach was taken by Worseley (1983)
who derived approximations to upper bounds of the null distribution functions of the

likelihood ratio statistics.

An important characteristic of the tests considered in Chapters 2 and 3 is that they
involve Gaussian processes. Using methods developed to solve boundary crossing prob-
lems by a Gaussian process we derived quite accurate approximations to significance levels
in various cases. The models that we studied are simple linear regression models. Al-
though we do not consider more complicated models and related problems like confidence
regions in general cases, this dissertation may give some insight into those problems. Note
that in both (2.16) and (3.12), bg(b) f:o‘ v[2u3(t, -)]ua(t, -)dt/a accounts for the boundary
crossing probabilities by the given Gaussian processes with respect to time and the in-
tegration with respect to the angle 6 is involved in (3.12) basically because of the angle
parameter introduced to reduce the 2-dimensional problem to the one-dimensional case.
This comparison may lead to a generalization of our results. In testing for a change in
the coefficient of the multiple regression model, the MLRS is the maximum norm of a d-
dimensional Gaussian process. By the same argument in Lemma 3.3.1, we can convert
this boundary crossing problem by a d-dimensional Gaussian process to a one-dimensional
problem with additional angle parameters. Thus, in general, once the covariance func-

tion of the Gaussian process is evaluated, a similar argument may be applied to find
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Chapter 4: Concluding Remarks 64

asymptotic expressions to approximate significance levels. In our models, the change
point is assumed to be one of the data points. Thus our model might be suitable to a
set of data which involves discrete time such as annual gross domestic product, number of
accidents in consecutive years, and so on. Hinkely (1971) studied a set of data obtained
from the experiment to determine the relationship between blood factor VII production
and wafarin concentration. In such a case, it is more reasonable to consider a continuous
model that a change occurs at some point in the range of the independent variables and
two-phase regression line is continuous. Also this example gives a good explanation why
we need to think about the two-phase regression model rather than some alternative such

as parabolic one.

In many cases a two-phase regression can only be a reasonable approximation, ade-
quate for many purposes. However it is also important to find an appropriate model. As
Beckman and Cook (1979) pointed out by example, the continuity assumption may lead
to very different estimates of the parameters. The choice of the model is to some extent a
matter of experience and common sense. Even though the model should be decided from
the biological. economic, or some other particular viewpoint, our model can be applied
to give some insight into the decision of a change in the regression relationship and our

approximations can be used as convenient standards.
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Table 1.

Approximations to Pr{M; > b}

)-(o 1)

G LA SR ANLA ML AN AN 2 A o A

When Only the Intercept Changes

(-

AN W W W (VO (T

m b P P2 True probability h
10 1.9571 0.4936 0.2656 0.25
2.3854 0.2393 0.1037 0.10
2.6595 0.1340 0.0511 0.05
3.1492 0.0384 0.0118 0.01
15 2.0171 0.4522 0.2996 0.25
2.4412 0.2142 0.1178 0.10
2.7224 0.1159 0.0568 0.05
3.2220 0.0312 0.0126 0.01
20 2.0632 0.4215 0.2657 0.25
2.4733 0.2006 0.1080 0.10
2.7321 0.1133 0.0556 0.05
3.2963 0.0250 0.0102 0.01
30 2.1190 0.3856 0.2634 0.25
2.5253 0.1800 0.1077 0.10
2.8006 0.0961 0.0529 0.05
3.3963 0.0185 0.0086 0.01
40 2.1487 0.3672 0.2645 0.25
2.5598 0.1672 0.1068 0.10
2.8429 0.0866 0.0518 0.05
3.3241 0.0230 0.0121 0.01
70 2.2092 0.3313 0.2602 0.25
2.6274 0.1441 0.1027 0.10
2.9131 0.0726 0.0487 0.05
3.4527 0.0155 0.0093 0.01

A R e T 1% . S Nl S L T P S N Pty P YA S O S S
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mp = 0.1 *m,

m; =09+m

p: : Approximations by A.2.3

p, : Approximations by A.2.4
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Table 2. Approximations to Pr{M; > b}
: When Only the Intercept Changes
z ( 0 1 0 )
~ N ,
i 0 01
m b p (p") True probability
10 2.1732 0.1888 (0.1695) 0.25
2.4692 0.0587 (0.0842) 0.10
2.6146 0.0256 (0.0577) 0.05
2.8404 0.0035 (0.0306) 0.01
15 2.1672 0.2475 (0.2203) 0.25
2.5133 0.0860 (0.0985) 0.10
2.6955 0.0415 (0.0611) 0.05
3.0521 0.0058 (0.0217) 0.01
20 2.1703 0.2381 (0.2139) 0.25
2.5324 0.0883 (0.0935) 0.10
2.7403 0.0429 (0.0544) 0.05
3.1280 0.0075 (0.0175) 0.01
30 2.1810 0.2520 (0.2325) 0.25
2.5769 0.0925 (0.0949) 0.10
2.8172 0.0435 (0.0506) 0.05
3.2502 0.0079 (0.0139) 0.01
40 2.2108 0.2484 (0.2335) 0.25
2.5975 0.0963 (0.0974) 0.10
2.8312 | 0.0481 (0.0530) 0.05
3.2674 0.0100 (0.0145) 0.01
70 2.2431 0.2524 (0.2431) 0.25
2.6415 0.0988 (0.0991) 0.10
2.8952 | 0.0485 (0.0511) 0.05
3.3743 0.0097 (0.0121) 0.01
mg = 0.1+ m, m; =09+m
p : Approximations by A.2.5.
p’ : Approximations by A.2.4.
-J.' -‘ '('.f.;".:".;fl;'.\:'-‘ﬁn!-'. - ,'-’~~r, '3 "\.Nf ‘ r‘.nr - N V v . A .. C%y .\. o .- -'._ .' o ._"\ .'{._..-\_

<

i

r

CENA W BT WIS NS

R

LU L e e 3 K

o

Y

gty LU
] =, e R

-~

R END

o’
g s

P ol s 4
LN S e Ty
)y

g

14 ]  ~ )
< |® .\I“-‘.("yl'_:,‘ s,

fy
W o

LT
PO ‘7’

Bl N9

----------



gtes

8% 17

N UNLY

g tap ¢

M $008 €0 00 g R AT AN e s ot M L NG L OO R Y

e7

Table 3. Approximations to Pr{M, > b,},i=1,2.

: When Only the Intercept Changes

z;=j/m, j=1,....m

m by p b, (") True probability
10 | 20756 | 02675 | 2.2625 | (0.1736) 0.25
2.4519 0.1073 2.4582 (0.0941) 0.10
2.7157 | 00517 | 2.6236 | (0.0673) 0.05
3.2747 | 0.0086 | 2.8425 | (0.0314) 0.01
15 2.1695 0.2769 2.3093 (0.1931) 0.25
2.5812 | 0.1005 | 2.6036 | (0.0897) 0.10
2.8500 | 0.0468 | 2.7647 | (0.0565) 0.05
3.3413 | 00095 | 3.0455 | (0.0236) 0.01
20 2.2315 0.2883 2.3395 (0.2136) 0.25
2.6245 0.1067 2.6553 (0.0946) 0.10
2.8665 0.0539 2.8388 (0.0559) 0.05
3.3924 0.0098 3.1921 (0.0183) 0.01
30 | 23271 | 02743 | 23939 | (0.2314) 0.25
2.7133 0.1046 2.7332 (0.0969) 0.10
2.9598 0.0518 2.9517 (0.0516) 0.05
3.4R29 0.0093 3.3466 (0.0144) 0.01
40 | 2.3632 | 0.2846 | 24154 | (0.2498) 0.25
2.7509 0.1083 2.7605 (0.1039) 0.10
3.0144 0.0510 2.9825 (0.0550) 0.05
3.5135 | 0.0099 | 3.4327 | (0.0128) 0.01
70 2.4357 0.2933 2.4635 (0.2736) 0.25
2.8348 0.1078 2.8328 (0.1076) 0.10
3.1037 0.0497 3.0712 (0.0543) 0.05
3.5847 0.0102 3.5166 (0.0128) 0.01
mo = 0.1+m, m; =09«m

b, : Percentiles of M, (o? is known)
p : Approximations by (2.16)

b, : Percentiles of M, (0 is unknown)

p’ : Approximations by (2.16)
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Table 4. Approximations to Pr{M; > b}
2
.
e.'l
-'\' . .
:I zj‘-:J/mo J=1o'° m
g
a'
}' b\ m 10 20 30 40 50
. 2.00 0.3150 0.4569 0.5416 0.6002 0.6441
, 2.05 0.2829 0.4136 0.4922 0.5468 0.5877
;:: 2.10 0.2534 0.3733 0.4460 0.4966 0.5347
o 2.15 0.2263 0.3359 0.4028 0.4496 0.4849
X 2.20 0.2015 0.3014 0.3628 0.4059 0.4385
\ 2.25 0.1789 0.2696 0.3257 0.3653 0.3953
A 2.30 0.1584 0.2404 0.2916 0.3278 0.3553
2.35 0.1398 0.2138 0.2603 0.2933 0.3184
o 2.40 0.1231 0.1896 0.2317 0.2616 0.2845
; 2.45 0.1081 0.1676 0.2056 0.2327 0.2535
0 2.50 0.0946 0.1478 0.1819 0.2064 0.2252
Y 2.55 0.0826 0.1300 0.1605 0.1825 0.1995
2.60 0.0719 0.1139 0.1412 0.1610 0.1762
3 2.65 0.0625 0.0996 0.1239 0.1416 0.1552
Y 2.70 0.0541 0.0868 0.1084 0.1241 0.1363
N 2.75 | 0.0468 | 0.0755 | 0.0946 | 0.1085 | 0.1194
2.80 0.0403 0.0655 0.0823 0.0946 0.1042
0 2.85 0.0346 0.0566 0.0714 0.0823 0.0908
v 2.90 0.0297 0.0488 0.0618 0.0714 0.0788
K 2.95 0.0254 0.0420 0.0533 0.0617 0.0683
: 3.00 0.0216 0.0360 0.0459 0.0532 0.0590
. 3.05 0.0184 0.0308 0.0394 0.0458 0.0508
Y 3.10 0.0156 0.0263 0.0337 0.0392 0.0436
} . 3.15 0.0132 0.0223 0.0288 0.0336 0.0374
P 3.20 0.0111 0.0190 0.0245 0.0286 0.0319
" 3.25 0.0094 0.0160 0.0208 0.0244 0.0272
§ 3.30 0.0079 0.0135 0.0176 0.0207 0.0231
", 3.35 0.0066 0.0114 0.0149 0.0175 0.0196
N 3.40 0.0055 0.0096 0.0125 0.0148 0.0165
3.45 0.0046 0.0080 0.0105 0.0124 0.0139
X 3.50 0.0038 0.0067 0.0088 0.0104 0.0117
! 3.55 0.0032 0.0056 0.0073 0.0087 0.0098
3.60 0.0026 0.0046 0.0061 0.0073 0.0082
d 3.65 0.0026 0.0038 0.0051 0.0061 0.0068
3.70 0.0018 0.0032 0.0042 0.0050 0.0057
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Table 4. (Continued)

b\ m 60 70 80 90

2.00 | 0.6787 | 0.7069 | 0.7306 | 0.7508
2.05 | 06201 | 0.6465 | 0.6687 | 0.6877
2.0 | 05648 | 0.5895 | 0.6102 | 0.6280
2.15 | 05129 | 0.5358 | 0.5551 | 0.5716
220 | 04643 | 04856 | 0.5034 | 0.5188
225 | 0.4191 | 0.4387 | 0.4552 | 0.4694
2.30 | 03772 | 0.3952 | 0.4104 | 0.4234
235 | 03384 | 0.3550 | 0.3689 | 0.3809
240 | 03028 | 0.3179 | 0.3306 | 0.3416
245 | 0.2701 | 0.2838 | 0.2954 | 0.3054
2.50 | 0.2402 | 0.2527 | 0.2632 | 0.2723
2.55 | 02131 | 0.2243 | 0.2339 | 0.2421
2.60 | 0.1884 | 0.1986 | 02072 | 0.2146
2.65 | 0.1662 | 0.1753 | 0.1830 | 0.1897
2.70 | 0.1461 | 0.1543 | 0.1612 | 0.1672
2.75 | 0.1281 | 0.1354 | 0.1416 | 0.1470
280 | 01120 | 0.1185 | 0.1240 | 0.1288
2.85 | 0.0977 | 0.1034 | 0.1083 | 0.1126
2.90 | 0.0849 | 0.0900 | 0.0943 | 0.0981
295 | 0.0736 | 0.0781 | 00819 | 0.0853
3.00 | 0.0637 | 0.0676 | 0.0710 | 0.0739
305 | 00549 | 00584 | 0.0613 | 0.0639
310 | 00472 | 0.0502 | 0.0528 | 0.0551
315 | 0.0405 | 0.0431 | 00454 | 0.0473
320 | 00346 | 0.0369 | 0.0389 | 0.0406
325 | 00295 | 0.0315 | 0.0332 | 0.0347
330 | 0.0251 | 0.0268 | 0.0283 | 0.0296
3.35 | 0.0213 | 0.0228 | 0.0240 | 0.0251
340 | 0.0180 | 0.0193 | 0.0204 | 0.0213
345 | 00152 | 0.0163 | 0.0172 | 0.0180
3.50 | 00128 | 0.0137 | 0.0145 | 0.0152
3.55 | 0.0107 | 0.0115 | 00122 | 0.0128
3.60 | 0.0090 | 0.0097 | 0.0102 | 0.0107
3.65 | 0.0075 | 0.0081 | 0.0085 | 0.0090
3.70 | 0.0062 | 0.0067 | 0.0071 | 0.0075

mg = 0.1 »m,
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Table 5. Approximations to Pr{M, > 5},

: When Only the Intercept Changes

z; =(j/m)? j=1,...,m

(p")
(0.1771)
(0.1050)

(0.0518)
(0.0352)

(0.2234)
(0.0982)
(0.0584)
(0.0202)

(0.2450)
(0.1005)
(0.0539)
(0.0133)

(0.2575)
(0.1007)
(0.0528)
(0.0128)

(0.2681)
(0.1092)
(0.0569)
(0.0137)

mg = 0.1*m, m; =09+m
b, : Percentiles of M, (o? is known)
P1, P, : Approximations by (2.19)
b, : Percentiles of M; (0 is unknown)

!

p’ : Approximations by (2.19)
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Table 6. Approximations to Powers

: When Only the Intercept Changes

zj=j/m, j=1,....m

True True

a; — ag p m LRT prob. MLRT prob.
3.6 10 20 0.8903 0.8854 0.9012 0.8974
5 0.9794 0.9681 0.9863 0.9720
0.9675 0.9573 0.9746 0.9622

3.0 10 20 0.7157 0.7180 0.7351 0.7361
5 0.8580 0.8643 0.8708 0.8753
_ 0.8391 0.8428 0.8530 0.8557
24 10 20 0.4708 0.4840 0.4942 0.5058
5 0.6290 0.6568 0.6510 0.6756
3 0.6045 0.6208 0.6270 0.6420
Critical
value 2.9204 (5%) 2.8665 (5%)
2.4 20 40 0.8800 0.8869 0.8960 0.8988
10 0.9664 0.9619 0.9756 0.9664
5 0.9360 0.9374 0.9472 0.9454
1.6 20 40 0.4893 0.5158 0.5230 0.5364
10 0.6381 0.6757 0.6693 0.7010
5 0.5768 0.6136 0.6096 0.6486
1.0 20 40 0.1887 0.2494 0.2131 0.2639
10 0.2608 0.3312 0.2898 0.3516
5 0.2289 0.2950 0.2561 0.3041
Critical
value 2.8253 (10%) 2.7509 (10%)
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Table 7.

Approximations to Pr{M; > b}, i=3,4

: When Both the Intercept and Slope Change

()06

m bs P by ) True probability
10 2.2803 0.1859 24911 (0.1289) 0.25
2.6949 0.0856 2.7060 (0.0836) 0.10
2.9598 0.0464 2.8115 (0.0661) 0.05
35379 | 0.0091 | 2.9682 | (0.0455) 0.01
20 2.5024 0.2101 2.6090 (0.1710) 0.25
2.9039 0.8976 2.9081 (0.0889) 0.10
3.1656 | 0.0463 | 3.0908 | (0.0564) 0.05
3.6775 0.0100 3.4050 (0.0235) 0.01
30 2.5547 0.2052 2.6373 (0.1745) 0.25
2.9692 0.0835 2.9784 (0.0817) 0.10
3.2401 0.0414 3.1834 (0.0483) 0.05
3.6940 | 0.0105 | 3.5136 | (0.0187) 0.01
40 2.5794 0.2050 2.6405 (0.1819) 0.25
2.9644 | 0.0891 2.9880 | (0.0841) 0.10
3.2474 0.0430 3.2198 (0.0463) 0.05
3.7426 0.0096 3.6063 (0.0149) 0.01
50 2.6238 0.1943 2.6723 (0.1763) 0.25
3.0193 0.0808 3.0338 (0.0780) 0.10
3.2783 0.0410 3.2641 (0.0438) 0.05
3.7726 0.0090 3.6846 (0.0121) 0.01
mp = 2, m; =8 form =10
mg = 0.1 *m, m; =09%+m form > 20
bs : Percentiles of M3 (02 is known)
p : Approximations by (3.8)
by : Percentiles of M, (¢? is unknown)
p’ : Approximations by (3.8)
e A e G D e e L ]
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Table 8. Approximations to Pr{A; > b,}, i=3.4 Y
"
T
: When Both the Intercept and Slope Change Dy
z;=j/m, j=1,...,m. ‘
m b3 P by (p) True probability \?\‘,
e
10 2.3440 0.2917 2.5149 (0.2186) 0.25
2.7557 0.1078 2.7157 (0.1352) 0.10 .
3.0350 0.0488 2.8207 (0.1032) 0.05 :
3.5315 0.0095 2.9741 (0.0679) 0.01 "
20 | 2.5893 | 0.2746 | 2.6871 | (0.2287) 0.25 o
2.98C3 0.1015 2.9628 (0.1134) 0.10 P
3.2348 | 0.0481 | 3.1387 | (0.0691) 0.05 RS
3.7381 0.0088 3.4394 (0.0273) 0.01 o
30 2.6711 0.2877 2.7411 (0.2510) 0.25 . :
3.0584 | 0.1065 | 3.0619 | (0.1098) 0.10 %%
3.3040 0.0516 3.2483 (0.0642) 0.05 - )
3.7634 0.0110 3.6044 (0.0206) 0.01 l};
40 2.7121 0.3025 2.7772 (0.2649) 0.25 ~
3.1058 0.1100 3.1156 (0.1101) 0.10 :‘_f
3.3700 0.0502 3.3256 (0.0596) 0.05 f‘-:.
3.8502 0.0098 3.7341 (0.0156) 0.01 (.'
50 2.7636 0.2971 2.8077 (0.2717) 0.25 rig
3.1519 0.1122 3.1496 (0.1115) 0.10 ::'
3.3863 0.0504 3.3647 (0.0593) 0.05 .0‘;
3.8851 0.0099 3.7778 (0.0152) 0.01 b !
"
]
N' g
mo = 2. m; =8 form = 10 :,r-"
mg = 0.1 *m, m; =09+m form > 20 :\
f.;-
2 o
b3 : Percentiles of M3 (o is known) N,
i
p : Approximations by (3.12) A
“‘
»
b4 : Percentiles of My (a2 is unknown) ;::
®
p’ : Approximations by (3.12) =
~.‘
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Appendices

~ i {ALLY )

A.l. Basic Facts about Convergence of Probability Measures

Convergence in distribution of a sequence {X,} of real random variables is tradi-

VY

tionally defined to mean convergence of distribution functions at each continuity point of

the limit distribution function. For random elements of more general spaces not equipped :"‘
with a partial ordering, even the concept of distribution function disappears. In Chapter : ]
1 of Billingsley (1968), convergence in distribution for a sequence of random elements was "
summarized and now we define the convergence in distribution for random elements using ":::
his results. o)
Let C = C[0,1] be the space of continuous functions on [0,1], where we give C the (42
uniform topology by defining the distance between the points z, y as %_
3
d(z,y) = sup |z(t) - y(1)]- i
0<t<1 ',t:
Chapter 2 of Billingsley (1968) contains a theory about the weak convergence in the space % |
C which is used in this dissertation. Here, we include a brief review of definitions and :Jﬁ
theorems which are basic and important. S::
Suppose now that {X,} is a sequence of random elements in C. That is, for each « in %‘.
Q, X, (w) is an element of C whose values at t we denote by X,(t,w). For points ?;,...,¢ in F
[0,1],1et 7y, ,...1, be the mapping that carries the point z of C to the point (z(t;),...,z(t)) ‘E{:
of R*. The finite dimensional sets are now defined as sets of the form r,‘l}-__',. H with H € R* :""
and tile finite dimensional distribution of X, as that of #;,, ., X. Since the space of Borel s
sets of C with the uniform metric is separable and complete, the finite dimensional sets EE
generate the space of Borel sets. However. the convergence in distribution of m,, . X 'tE
does not imply the convergence of X, in distribution. The difficulty and interest of weak 'D;J
convergence in C al! .ome from the fact that it involves considerations going beyond those :_;,E
of finite dimensional sets. Here is an idea which provides a powerful technique for proving .'.'r N
weak convergence in C. If every sequence of X, contains a subsequence which converges in I
distribution, then X, converges in distribution. In the space C this condition is equivalent !;
3
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to “tightness” which is a condition that has the effect of preventing the escape of mass to
infinity in a certain sense. Now we define tightness of a sequence of random elements as
follows: X, is tight if X,(0) is tight on line and if for each positive ¢ and n there exists a

é, 0 < & < 1, and an integer ng such that

1Pe{ sup |Xn(s) = Xa(t) 2 e} <1
6 t<s<t+6

for n > np and 0 <t < 1. Then we have the following result.
Theorem A.1.1

Let X, X,,X5,..., be random elements of C. If the finite dimensional distributions

of X, converges to those of X, and if {X,} is tight, then X, = X.

To obtain the limiting distributions of the test statistics defined in Sections 2.1 and 3.1
when the independent variables are random, Donsker’s theorem was used as an important
tool. Donsker formulated a refinement of the central limit theorem by proving weak
convergence of the distributions of certain random functions constructed from the partial

sum.

Theorem A.1.2 (Donsker)

Let y1,v2,... be i.i.d. random variables with mean 0 and finite, positive variance a2,

and let S, = y1 + ...+ yn. Define a random element X, of C by

1 1 '
Xn(tw) = mslml(“) + (nt - [ﬂtl)my[nt1+x(w)-
Then as n — oc, X,, converges to a Brownian motion process in distribution.

A.2. Applications of Boundary Crossing Probabilities to Change-Point Prob-

lems

Methods developed to approximate boundary crossing probabilities in fixed sample
statistical problems provide an important tool in this dissertation. Especially, the results
in Siegmund (1986) and James, James, and Siegmund (1987) developed for change-point
problems were used to approximate the significance levels of the modified likelihood ratio

statistics defined in Sections 2.1. and 3.1. The above two papers are concerned with
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the problem of testing a sequence of normal random variables with constant, known or

unknown, variance for no change in mean versus alternatives with a single change-point.

Let z;,...,2m be independent random variables and consider the case where the z/s

are normally distributed with mean u(™) and constant variance. One specific problem is

to test
Ho :p(l) =...=pulm, against
Hy : 31<p<m such that
pD = o= pe) # o)) o = ()

When the variance is known, Siegmund (1986) suggests

max | Sk — kSm/m|/{k(1 - k/m)}} (A.2.1)

mo<k<m,

as a test statistic and derives an approximation to the significance level of the test based

on (A.2.1). As an application of the theories of weak convergence of stochastic processes ,

Pr{ max |Sk-kSn,/m|/{k(1-k/m)}} >b) (A.2.2)

MQSkSm
can be approximated by the corresponding probability defined in terms of a Brownian

motion process W(t) (0 <t < oc). That is, (A.2.2) is approximately

Pr{|Wo(t)| > b{t(1 - t)}% for some 7 <t < 1—¢3}
(A.2.3)
= (b-b"1)o(b)log{(1 — £1)(1 — £3)/ere2) + 4b~ 1 d(b) + o(b™14(})),
which is given in Siegmund (1986). The following theorem given in Siegmund (1986)

provides an approximation to the significance level of the test statistic (A.2.1) , taking

discreteness into consideration.
Theorem A.2.1.

Assume that b — oo, mg — oc, m — oc in such a way that for some 0 <ty < t; < 1
and by > 0

m;/m —t;, i=0,1 and b/vm = bo.

Let E = mfo for some ‘fol € (bo(l - tl){to(l - to)}%,bo{f](l - tl)}%)
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Then as m — x,

Pr{mg@cml | Sk — kSm/m |/{k(1 - k/m)}} > b}

b(mg1-m=1)} (A.2.4)

= 2bo(b) 7 v(z + b2 /mz)dz + 2[1 - &(b)),

b(m;t~m=1)}
where v is given by (2.10).

In the case of unknown and constant variance, James, James, and Siegmund (1987)

considered the statistic,

[M_/_'_n_l{ -IZ(I "l‘m)} }

mo<k<m1 L{k(l
and provides the following approximation which can be used to approximate the signifi-

cance level.
Corollary A.2.2

Under the same assumptions as in Theorem A.2.1,

Sk~ kSm/ml, 1R gy
Pr{"‘°<3§"”[{kl—k/m)}g{' ,;(In Im)‘} ]Zb}

= 2{m/( 27)}2/bo (1 - z%)(m=912g (A.2.5)

+(2/7)5b(1 - b2/m)(""4)/2/z'lu[z + b2/ {m(1 - b?)z})dz,
where the second integral on the right side is over

(b{(m7 = m™1)/(1 - 83)}E,5{(mg* - m~1)/(1 - b2)}1).
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can be applied to the unknown variance case.

with the power of the LRT and confidence regions for a change point.

This dissertation focuses on the problem of testing for a change in the regression
model when errors are independently, normally distributed with constant, known or un-
known variance. First we consider the regression model in which only the intercept changes
at some unknown point (Model-1). Secondly, the model in which both intercept and slope
change is considered (Model-2). In all cases, the likelihood ratio statistic (LRS) is of the

form U = max;<i<m Ui, where distributions of U;’s vary according to the assumptions.

In both models, we consider the likelihood ratio test (LRT) as the problem of the
boundary crossing by the discrete stochastic process and study problems such as approx-
imations to significance levels, powers, and confidence regions for a change point. First of
all, we propose a modified LRT and discuss asymptotic properties of test statistics in cases
of random and fixed independent variables. In both cases, we derive analytical approxi-
mations to significance levels. When the independent variables are random, the limiting
distribution of the modified LRS is a function of a Brownian motion and approximations
in Siegmund (1986, Annals of Statistics) are used. For fixed independent variables, the
limiting distribution involves a Gaussian process with nondifferentiable sample paths. In
this case, an approximation is derived assuming the known variance and mild conditions
about the empirical distribution of the independent variable, using the argument in Lead-
better, Lindgren and Rootzen (1983,Chapter12), modified for discrete time by Hogan and
Siegmund (1986, Advances in Applied Mathematics). In Model-1, we are also concerned

Numerical approximations of significance levels and powers of the LRT and the results
of corresponding Monte Carlo experiments are obtained. We find that the simulations

confirm that the theoretical results perform well and demonstrate that the results also
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